期刊文献+

基于颜色-纹理特征的目标跟踪 被引量:9

Target tracking based on color and the texture feature
下载PDF
导出
摘要 针对传统的基于颜色特征目标跟踪算法在一些复杂场景中存在的跟踪不稳定性,提出一种基于颜色-纹理特征的目标跟踪算法;在传统的基于颜色Mean-shift的目标跟踪算法中加入纹理特征,在提取目标颜色特征的同时提取目标的纹理特征,并且采取串接原则,在搜索目标新位置时仍然沿用传统的基于颜色的均值漂移跟踪算法,但在每一次迭代过程搜寻目标最佳的位置点即特征相似最大的区域时,利用纹理特征来实现,并且采用八邻域搜索法(候选区域周围扩大八个大小相等的区域)来解决部分遮挡的问题。通过对比实验表明,该算法在复杂场景中表现出的实时性和鲁棒性较好。 In some complex scenes of tracking,the traditional color feature based target tracking algorithm may have the unstable tracking.To solve this problem,a color and texture feature based target tracking algorithm is proposed.The texture feature is added in the traditional color Mean shift based target tracking algorithm,and both the texture and the color features are extracted together.According to the sequence principle,the traditional color based mean drift tracking algorithm is still used to search the new position of the target,but,in each iteration process,the texture feature is used to search the optimal target position which has the largest similar feature.And the eight neighborhood search method (8 areas with the same size are expanded around the candidate area) is applied to solve the problem of partial occlusion.The comparative experiments show that the algorithm has better robustness and realtime performance in complex scenes.
出处 《计算机工程与科学》 CSCD 北大核心 2014年第8期1581-1587,共7页 Computer Engineering & Science
基金 国家自然科学基金资助项目(60973113) 湖南省自然科学基金资助项目(12JJ6057) 长沙市科技计划资助项目(K1203015-11) 湖南省标准化战略项目(2011031)
关键词 目标跟踪 颜色特征 均值漂移 纹理特征 target tracking color features Mean-shift texture feature
  • 相关文献

参考文献3

二级参考文献26

  • 1Tan X, Triggs B.Enhanced local texture feature sets for face recognition under difficult lighting conditions[J].IEEE Trans on Image Processing,2010,19(6) : 1635-1650. 被引量:1
  • 2Zhao W,Chellappa R, Rosenfeld A.Face recognition:A literature survey[J].ACM Computing Surveys,2003,35:399-458. 被引量:1
  • 3Adani Y,Ullman S.Face recognition:the problem of compensat- ing for the illumination direction[C]//Proceedings of ECCV Conference, 1994 : 286-296. 被引量:1
  • 4Wilder J, Phillips P J, Jiang C, et al.Comparison of visible and infrared imagery for face recognition[C]//Proceedings of the IEEE AFGR Conference, 1996 : 182-187. 被引量:1
  • 5Li S Z,Chu R,Liao S,et al.lllumination invariant face recognition using near-infrared images[J].IEEE Trans PAMI,2007,29(4): 627-639. 被引量:1
  • 6Zou X, Kittler J, Messer K.Face recognition using active Near-IR illumination[C]//Procedings of BMVC Conference,2005:209-219. 被引量:1
  • 7Belhumeur P, Kriegman D.What is the set of images of an object under all possible illumination conditions[J].IJCV, 1998, 28 (3) : 245-260. 被引量:1
  • 8Basri R,Jacobs D.Lambertian reflectance and linear subspaces[C]// Proceedings of the IEEE ICCV Conference,2001:218-233. 被引量:1
  • 9Lee K C, Ho J, Kriegman D.Nine points of lights: Acquiring subspaces for face recognition under variable lighting[C]//Proceedings of the IEEE CVPR Conference,2001 : 519-526. 被引量:1
  • 10Zhou S, Aggarwal G, Chellapa R, et al.Appearance characterization of linear lambertian objects, generalized photometric stereo and illumination-invariant face recognition[J].lEEE Trans on PAMI,2007,29(2) :230-245. 被引量:1

共引文献8

同被引文献66

引证文献9

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部