期刊文献+

Xeon Phi平台上基于模板优化的3D GVF场计算加速 被引量:1

Accelerating 3D GVF field computation on Xeon Phi using stencil optimization
下载PDF
导出
摘要 3D梯度向量流场(3DGVF field)广泛应用于多种3D图像分析算法中,其计算需要多次迭代,计算量大,如何提高其计算速度具有重要的研究意义。面向Intel Xeon Phi众核集成架构,首次进行了3DGVF场计算的加速优化。首先,挖掘3D图像像素点间存在的天然并行性,发挥众核架构优势,尝试线程级并行(多核)和数据级并行(SIMD)。其次,3DGVF场的计算过程是一种典型的3D-7点模板运算,结合Xeon Phi架构的L2缓存规格,提出一种高效的数据分块策略,充分挖掘数据的时/空局部性,有效缓解模板计算引起的缓存缺失,提升了计算性能。实验结果表明,引入模板优化技术能显著提升3D GVF场的计算速度,在图像维度为5123时,所提方法在57核Xeon Phi平台上的性能相比在2.6GHz 8核16线程的Intel Xeon E5-2670CPU上的性能,加速比可达2.77。 3D Gradient Vector Flow (GVF) field has wide applications in many image processing al gorithms.The computation of GVF field typically needs several iterations and is rather time consuming.Therefore,it is important and meaningful to improve the computation speed of 3D GVF field.The data level parallelism and thread level parallelism are introduced to accelerate the GVF field computation pro cedure on Intel Xeon Phi many core integrated platform for the first time.Meanwhile,GVF field compu tation is a kind of stencil computation,whose computation-memory access ratio is low.A novel cache blocking strategy is proposed to fully utilize the L2 cache of Xeon Phi architecture,and to improve the computation speed of GVF field.The experimental results show that the proposed optimizations could effectively improve the speed of GVF filed computation.Especially,for a 5123 3D image,compared with the performance obtained by a 2.6G Hz 8 core 16threads Intel Xeon E5-2670 CPU,the speedup achieved on Xeon Phi is 2.77X.
出处 《计算机工程与科学》 CSCD 北大核心 2014年第8期1435-1440,共6页 Computer Engineering & Science
基金 国家863计划资助项目(2012AA010903) 国家自然科学基金资助项目(61170049 61303189)
关键词 3D梯度向量流场 XEON PHI 模板优化 缓存分块 3D GVF field Xeon Phi stencil optimization cache blocking
  • 相关文献

参考文献1

二级参考文献26

  • 1屈颖歌,周涛,王平安,夏德深.基于支持向量机的核磁共振左心室图像自动检测与分割[J].武汉大学学报(理学版),2003,49(6):769-774. 被引量:5
  • 2周则明,陈强,王平安,夏德深.结合模糊C均值聚类和曲线演化的心脏MRI图像分割[J].系统仿真学报,2005,17(1):129-133. 被引量:12
  • 3陈强,周则明,屈颖歌,王平安,夏德深.左心室核磁共振图像的自动分割[J].计算机学报,2005,28(6):991-999. 被引量:9
  • 4Duncan J S,Ayache N.Medical image analysis:Progress over two decades and the challenges ahead.IEEE TPAMI,2000,22(1):181-204 被引量:1
  • 5Taratorin A,Sideman S.3D functional mapping of left ventricular dynamics.Computerized Medical Imaging and Graphics,1995,19(1):113-129 被引量:1
  • 6McInerney T,Terzopoulos D.A dynamic finite element surface model for segmentation and tracking in multidimensional medical images with application to cardiac 4D images analysis.Computerized Medical Imaging and Graphics,1995,19(1):69-83 被引量:1
  • 7Kaus M R,Berg J,Jurgen Weese.Automated segmentation of the left ventricle in cardiac MRI.MedIA,2004,8(3):245-254 被引量:1
  • 8Beichel R,Bischof H,Leberl F,Sonka M.Robust active appearance models and their application to medical image analysis.IEEETMI,2005,24(9):1151-1169 被引量:1
  • 9Frangi A F,Rueckert D,Schnabel J A,Niessen W J.Automatic construction of multiple-object three dimensional statistical shape models:Application to cardiac modeling.IEEE TMI,2002,21(9):1151-1166 被引量:1
  • 10Montagnat J,Herve Delingette.4D deformable models with temporal constraints:Application to 4D cardiac image segmentation.MedIA,2005,9:87-100 被引量:1

共引文献22

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部