期刊文献+

视频鸟类行为研究中基于尺度不变特征变换的形态分类算法 被引量:5

A Morphology Classification Method Based on SIFT for Behavior Analysis with Birds Video
原文传递
导出
摘要 本文介绍了我们在动物行为的智能分析研究中,针对青海湖野鸟监控获得的视频数据,基于数字图像处理及机器学习的方法对斑头雁形态样本进行分类的方法。我们首先采用尺度不变特征变换提取样本的特征点,选择不同的聚类中心对训练样本的特征点进行聚类,为每个样本生成特征向量来对样本进行描述,然后采用K最近邻算法建立模型,对斑头雁形态进行分类。对提出的方法进行了实验验证。通过恰当的特征选取,测试数据的分类准确率达到了73.75%。实验表明,本文提出的方法可以有效地从视频数据中实现斑头雁形态的自动分类。 For Animal behavior analysis, we present a classification method to study the behavior of bar-headed geese based on digital image processing and machine learning from the video data obtained in Qinghai Lake. Firstly, using SIFT(Scale Invariant Feature Transform),by extracting feature points in the samples and choosing different cluster centers for the feature points, we can describe each sample with one feature vector. Then, the Bar-headed Goose morphology is classiifed by the model based on K-nearest neighbor algorithm, and we can predict and analyze the behavior of the Bar-headed Goose from the classiifcation results with its biology background and relevant information from the video. Through proper selection of the features, we achieved an accuracy of 73.75%for the identiifcation of the test sets. Our experiment shows that the method is effective for automatic morphology classification and identification from the video data.
出处 《科研信息化技术与应用》 2014年第3期87-94,共8页 E-science Technology & Application
关键词 视频分析 形态分类 SIFT KNN video content analysis morphology classiifcation SIFT KNN
  • 相关文献

参考文献5

二级参考文献50

  • 1钟宝江,廖文和.基于精化曲线累加弦长的角点检测技术[J].计算机辅助设计与图形学学报,2004,16(7):939-943. 被引量:22
  • 2邱卫国,昂海松.基于隶属度特征的曲线角点检测方法[J].重庆大学学报(自然科学版),2004,27(11):43-46. 被引量:4
  • 3费旭东,荆仁杰.基于知识的快速角点提取[J].计算机学报,1994,17(1):30-36. 被引量:6
  • 4戚飞虎,刘建峰.一种有效的不变性角点检测方法[J].上海交通大学学报,1995,29(6):112-116. 被引量:4
  • 5[1]D D Lewis. Naive (Bayes) at forty: The independence assumption in information retrieval. In: The 10th European Conf on Machine Learning(ECML98), New York: Springer-Verlag, 1998. 4~15 被引量:1
  • 6[2]Y Yang, X Lin. A re-examination of text categorization methods. In: The 22nd Annual Int'l ACM SIGIR Conf on Research and Development in Information Retrieval, New York: ACM Press, 1999 被引量:1
  • 7[3]Y Yang, C G Chute. An example-based mapping method for text categorization and retrieval. ACM Trans on Information Systems, 1994, 12(3): 252~277 被引量:1
  • 8[4]E Wiener. A neural network approach to topic spotting. The 4th Annual Symp on Document Analysis and Information Retrieval (SDAIR 95), Las Vegas, NV, 1995 被引量:1
  • 9[5]R E Schapire, Y Singer. Improved boosting algorithms using confidence-rated predications. In: Proc of the 11th Annual Conf on Computational Learning Theory. Madison: ACM Press, 1998. 80~91 被引量:1
  • 10[6]T Joachims. Text categorization with support vector machines: Learning with many relevant features. In: The 10th European Conf on Machine Learning (ECML-98). Berlin: Springer, 1998. 137~142 被引量:1

共引文献339

同被引文献26

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部