期刊文献+

Dynamics of the Kuramoto Model with Bimodal Frequency Distribution on Complex Networks

Dynamics of the Kuramoto Model with Bimodal Frequency Distribution on Complex Networks
下载PDF
导出
摘要 We introduce a piecewise uniform frequency distribution to model a symmetrical bimodal natural frequency distribution and investigate the dynamics in the Kuramoto model on complex networks. We find that the scenario of the synchronization transition depends on the network topology. For an ER network, the incoherent state, standing wave states and stationary synchronous states are encountered successively with the increase of the coupling strength. However, for an SF network, there exists another type of synchronous states, traveling wave states, between the standing wave states and the stationary synchronous states. We introduce a piecewise uniform frequency distribution to model a symmetrical bimodal natural frequency distribution and investigate the dynamics in the Kuramoto model on complex networks. We find that the scenario of the synchronization transition depends on the network topology. For an ER network, the incoherent state, standing wave states and stationary synchronous states are encountered successively with the increase of the coupling strength. However, for an SF network, there exists another type of synchronous states, traveling wave states, between the standing wave states and the stationary synchronous states.
机构地区 SchoolofScience
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2014年第8期12-15,共4页 中国物理快报(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant No 71301012.
  • 相关文献

参考文献18

  • 1Winfree A T 1980 The Geometry of Biological Time (New York: Springer). 被引量:1
  • 2Strogatz S H 2003 sync: The Emerging Science of Spontaneous Order (New York: Hyperion). 被引量:1
  • 3Neda Z, Ravasz E, Vicsek T, Brechet Y and Barabasi A L 2000 Phys. Rev. E 61 6987. 被引量:1
  • 4Guo X Y and Li J M 2011 Chin. Phys. Lett. 28 120503. 被引量:1
  • 5Eckhardt B, Ott E, Strogatz S H, Abrams D M and McRobie A 2007 Phys. Rev. E 15 021110. 被引量:1
  • 6Wei D Q, Luo X S, Chen H B and Zhang B 2011 Chin. Phys. Lett. 28 110501. 被引量:1
  • 7Strogatz S H 2000 Physica D 143 1. 被引量:1
  • 8Acebron J A, Bonilla L L, Perez-Vicente C J, Ritort F and Spigler R 2005 Rev. Mod. Phys. 11137. 被引量:1
  • 9Kuramoto Y 1984 Chemical Oscillations, Waves and Turbulence (New York: Springer). 被引量:1
  • 10Martens E A, Barreto E, Strogatz S H, Ott E, So P and Antonsen T M 2009 Phys. Rev. E 19 026204. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部