期刊文献+

约简二次扩展平方根容积卡尔曼滤波及其应用

Reducted Twice Augmented Square-root Cubature Kalman Filter and Its Application
原文传递
导出
摘要 对于具有复杂加性噪声特点的非线性动态系统,往往很难直接运用传统非扩展容积卡尔曼滤波(CKF)方法对其状态进行有效估计。针对这一问题,通过非扩展和扩展Cubature变换精度的对比分析,结合扩展Cubature点集的约简特性,提出了一种约简二次扩展平方根容积卡尔曼滤波(RTA-SRCKF)方法。该方法采用二次扩展策略,在时间更新环节将过程噪声进行扩展,在量测更新环节将量测噪声进行扩展,有效缩减了采样点,降低了算法复杂度,具有很好的实时性,且在未损失滤波精度的前提下算法计算量明显降低,适用于具有复杂加性噪声特点的非线性动态系统状态估计。捷联惯性导航系统(SINS)大失准角初始对准仿真结果验证了理论分析结论,方位对准精度接近理论极限对准精度。 The traditional nonaugmented cubature Kalman filter (CKF) fails to estimate the status of a nonlinear dynamic system because of its complex additive noises.By analyzing the accuracy of the nonaugmented and augmented cubature transformation,a reduction algorithm of twice augmented square-root CKF (RTA-SRCKF) is proposed based on the reduction of the augmented cubature points.The novel filter,by twice augmenting the process noise and the measurement noise respectively in the time-update and the measurement-update step,is suitable for estimating the states of the nonlinear dynamic system with complex additive noises.Without any loss of estimation accuracy,its complexity is simplified,the computational cost is reduced and real-time performance is also improved since its number of sampling points is greatly reduced.The theoretical analysis result is verified by the initial alignment simulation of the strapdown inertial navigation system (SINS) with large misalignment angles and the estimation accuracy of the azimuth misalignment angle is close to its limit precision in theory.
出处 《航空学报》 EI CAS CSCD 北大核心 2014年第8期2286-2298,共13页 Acta Aeronautica et Astronautica Sinica
基金 国家"863"计划(2010AA7010213)~~
关键词 非线性滤波 二次扩展 平方根容积卡尔曼滤波 捷联惯性导航系统 初始对准 大失准角 实时性 nonlinear filter twice augmentation square-root cubature Kalman filter strapdown inertial navigation system initial alignment large misalignment angle real-time performance
  • 相关文献

参考文献6

二级参考文献58

  • 1魏春岭,张洪钺,郝曙光.捷联惯导系统大方位失准角下的非线性对准[J].航天控制,2003,21(4):25-35. 被引量:21
  • 2Scherzinger B M.Inertial navigation error models for large heading uncertainty[C]//Proceedings of Position Location and Navigation Symposium.Altanta:IEEE,1996.477-484. 被引量:1
  • 3Dmitriyev S P,Stepanov O A,Shepel S V.Nonlinear filtering methods application in INS alignment [J].IEEE Transactions on Aerospace and Electronic System.St.Petersburg:IEEE,1997,AES-33(1):260-272. 被引量:1
  • 4Kong Xiaoying,Nebot E M,Durrant-Whyte H.Development of a non-linear psi-angle model for large misalignment errors and its application in INS alignment and calibration [C]//International Conference on Robotics & Automation IEEE.Detroit:IEEE,1999. 被引量:1
  • 5Julier S,Uhlmann J and Durrant-Whyte H F.A New Method for the Nonlinear Transformation of Means and Covariances IN Filters and Estimatiors [J].IEEE Transactions on Automatic Control,Jefferson:IEEE,2000,45(3):477-482. 被引量:1
  • 6Haykin S.自适应滤波器原理[M].北京:电子工业出版社.2003.613-617. 被引量:1
  • 7Gao Wei,Xu Bo,Sun Hongjun,Yu Fei.Application of nonlinear filtering for SINS initial alignment[C]//Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation.Luoyang,China,2006:2259-2263. 被引量:1
  • 8Julier S,Uhlmann J K.A new method for the nonlinear transformation of means and covariances in filters and estimations[J].IEEE Trans.A.C.,2000,45(3):477-482. 被引量:1
  • 9R van der Merwe.Sigma-point Kalman filters for probabilistic inference in dynamic state-space models[D].Portland,OR,USA:OGI School of Science & Engineering at Oregon Health & Science University,2004. 被引量:1
  • 10Ali J,Nzar M.Realization of initial alignment algorithm for strapdown inertial navigation system using central difference filter[C]//Proceedings of the 17th World Congress.The International Federation of Automatic Control.Sooul,Korea,2008:4731-4736. 被引量:1

共引文献124

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部