期刊文献+

功能化石墨烯/聚苯胺复合电极材料的制备和电化学性能 被引量:18

Preparation and Electrochemical Properties of Functionalized Graphene/Polyaniline Composite Electrode Materials
下载PDF
导出
摘要 利用水合肼还原十八胺(ODA)接枝的氧化石墨烯(GO),得到了十八胺功能化石墨烯(ODA-G),将ODAG与聚苯胺(PANI)通过溶液共混法,制备了功能化石墨烯和聚苯胺纳米复合材料(ODA-G/PANI).采用傅里叶变换红外(FTIR)光谱、X射线衍射(XRD)、热重分析(TGA)、拉曼(Raman)光谱及透射电镜(TEM),对复合材料的结构和形貌进行了表征;利用循环伏安、恒流充放电及交流阻抗谱等,对复合材料的电化学性能进行了测试.结果显示,少量ODA-G的引入为PANI的电化学氧化还原反应提供了更多的电子通道和活性位置,有利于提高PANI的赝电容.在电流密度1.0 A·g-1下,2%(w)ODA-G/PANI的比电容达到787 F·g-1,而相应的PANI仅有426 F·g-1.此外,ODA-G/PANI的循环稳定性也远高于纯PANI. Octadecylamine functionalized graphene (ODA-G) was synthesized by the grafting of graphene oxide (GO) with ODA followed by reduction with hydrazine hydrate. Subsequently, ODA-G/polyaniline (PANI) composites were prepared using a facile solvent-blending procedure. ODA-G and ODA-G/PANI composites were characterized by Fourier transform infrared spectrometry (FTIR), X-ray diffraction (XRD), thermogravimetdc analysis (TGA), Raman spectroscopy, and transmission electron microscopy (TEM). The electrochemical properties of the composites were measured based on cyclic voltammetry (CV), galvanostatic charge/discharge, and ac impedance spectroscopy. The results show that ODA-G as a support material provides additional electron transfer paths, as well as active sites, for the electrochemical redox reaction of PANI, which helps to increase its pseudocapacitance. A specific capacitance of 782 F· g^-1 is obtained for 2%(w)ODA-G/PANI at a current density of 1,0 A· g^-1, compared with 426 F · g^-1 for PANI. Furthermore, ODA-G/PANI exhibits better stability than PANI.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2014年第9期1659-1666,共8页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(51164026) 内蒙古科技大学创新基金(2012NCL007)资助项目~~
关键词 功能化石墨烯 聚苯胺 超级电容器 电化学性能 溶液混合 Functionalized graphene Polyaniline Supercapacitor Electrochemical property Solvent-blending
  • 相关文献

参考文献2

二级参考文献28

  • 1Chen, Y. L.; Hu, Z. A.; Chang, Y. Q.; Wang, H. W.; Zhang, Z. Y.; Yang, Y. Y.; Wu, H. Y. J. Phys. Chem. C 2011,115,2563. doi: 10.1021/jp 109597n. 被引量:1
  • 2Wang, H. W.; Hu, Z. A.; Chang, Y. Q.; Chen, Y. L.; Wu, H. Y.; Zhang, Z. Y.; Yang, Y. Y. J. Mater. Chem. 2011, 21, 10504. doi: 10.1039/c1jm10758e. 被引量:1
  • 3Guan, C.; Li, X; Wang, Z.; Cao, X; Soci, C.; Zhang, H.; Fan, H. J. Adv. Mater. 2012,24,4186. doi: 10.1002/adma.201104295. 被引量:1
  • 4Wang, H.; Casalongue, H. S.; Liang, Y.; Dai, H. J. Am. Chem. Soc. 2010, 132, 7472. doi: 10.1021/jal02267j. 被引量:1
  • 5Jiang, H.; Ma, J.; Li, C. Chem. Commun. 2012,48,4465. doi: 10.1039/c2cc31418e. 被引量:1
  • 6Wu, Z. S.; Wang, D. W.; Ren, W.; Zhao, J.; Zhou, G.; Li, F.; Cheng, H. M.Adv. Funct. Mater. 2010, 20, 3595. doi: 10.1002/ adfm.v20:20. 被引量:1
  • 7Bi, R R; Wu, X. L.; Cao, F. F.; Jiang, L. Y.; Guo, Y. G.; Wan, L. J. J. Phys. Chem. C2010, 114, 2448. doi: 10.1021/jp9116563. 被引量:1
  • 8Wang, H.; Wang, Y.; Wang, X. Electrochem. Commun. 2012, 18, 92. doi: 10.1016/j.elecom.2012.02.023. 被引量:1
  • 9Wang, H. W.; Hu, Z. A.; Chang, Y. Q.; Chen, Y. L.; Zhang, Z. Y.; Yang, Y. Y.; Wu, H. Y. Mater. Chem. Phys. 2011, 130, 672. doi: 10.1016/j.matchemphys.2011.07 .043. 被引量:1
  • 10Gujar, T. P.; Shinde, V. R.; Lokhande, C. D.; Han, S. H. J. Power Sources 2006, 161, 1479. doi: 10. 1016/j.jpowsour. 2006.05.036. 被引量:1

共引文献49

同被引文献199

引证文献18

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部