期刊文献+

Quasi-stationarity and quasi-ergodicity of general Markov processes

Quasi-stationarity and quasi-ergodicity of general Markov processes
原文传递
导出
摘要 In this paper,we study the quasi-stationarity and quasi-ergodicity of general Markov processes.We show,among other things,that if X is a standard Markov process admitting a dual with respect to a finite measure m and if X admits a strictly positive continuous transition density p(t,x,y)(with respect to m)which is bounded in(x,y)for every t>0,then X has a unique quasi-stationary distribution and a unique quasi-ergodic distribution.We also present several classes of Markov processes satisfying the above conditions. In this paper, we study the quasi-stationarity and quasi-ergodicity of general Markov processes. We show, among other things, that if X is a standard Markov process admitting a dual with respect to a finite measure m and if X admits a strictly positive continuous transition density p(t, x, y) (with respect tom) which is bounded in (x, y) for every t 〉0, then X has a unique quasi-stationary distribution and a unique quasi-ergodic distribution. We also present several classes of Markov processes satisfying the above conditions.
出处 《Science China Mathematics》 SCIE 2014年第10期2013-2024,共12页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(GrantNo.11171010) Beijing Natural Science Foundation(Grant No.1112001)
关键词 Markov processes quasi-stationary distributions mean ratio quasi-stationary distributions quasiergodicity distributions 马尔可夫过程 平稳性 遍历 有限测度 稳态分布 tgt
  • 相关文献

参考文献25

  • 1Breyer L A, Roberts G O. A quasi-ergodic theorem for evanescent processes. Stochastic Process Appl, 1999, 84:177-186. 被引量:1
  • 2Brown A L, Page A. Elements of Functional Analysis. London-New York: Van Nostrand-Reinhold, 1970. 被引量:1
  • 3Chen J, Jian S. Some limit theorems of killed Brownian motion. Sci China Math, 2012, 55: 497-514. 被引量:1
  • 4Chen J, Li H, Jian S. Some limit theorems for absorbing Markov processes. J Phys A Math Theor, 2012, doi:10.1088/1751-8113/45/34/345003. 被引量:1
  • 5Chen Z-Q, Kim P, Kumagai T. Global heat kernel estimates for symmetric jump processes. Trans Amer Math Soc,2011, 363: 5021-5055. 被引量:1
  • 6Chen Z-Q, Kumagai T. A priori H?lder estimate, parabolic Hanack principle and heat kernel estimates for diffusions with jumps. Rev Mat Iberoamericana, 2010, 26: 551-589. 被引量:1
  • 7Darroch J N, Seneta E. On quasi-stationary distributions in absorbing discrete-time finite Markov chains. J Appl Probab, 1965, 2: 88-100. 被引量:1
  • 8Darroch J N, Seneta E. On quasi-stationary distributions in absorbing continous-time finite Markov chains. J Appl Probab, 1967, 4: 192-196. 被引量:1
  • 9Davies E B. Heat Kernels and Spectral Theory. Cambridge: Cambridge University Press, 1989. 被引量:1
  • 10Flaspohler D C. Quasi-stationary distributions for absorbing continuous-time denumerable Markov chains. Ann Inst Statist Math, 1973, 26: 351-356. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部