期刊文献+

基于多层分块自适应压缩感知的图像编解码方法 被引量:4

Image codec method based on multi-layered block adaptive compressed sensing
下载PDF
导出
摘要 压缩感知中,测量矩阵对图像进行单一采样率的压缩采样。传统的测量矩阵虽然能够获得比较好的重构效果,但因采样数目较多,故而资源耗费也较多。为了解决上述问题,提出了多层分块自适应编码算法(multi-layered block adaptive coding algorithm,MLBA)以及多层分块自适应压缩感知编解码方法(multi-layered block adaptive compressed sensing codec method,MLBACS)。MLBACS编解码方法基于MLBA编码算法,能够根据图像局部结构进行不同层数和大小的分块,并自适应分配采样率。仿真结果表明,在同等重构性能的前提下,相对于单一采样率下的压缩感知,MLBACS编解码方法能够不同程度地降低重构图像所需的采样数目。 In compressed sensing,the image is sampled by measurement matrix at a single sampling rate.The traditional measure-ment matrix could achieve good performance on image reconstruction,but usually occupies numerous system resources because of a large number of sampling.A multi-layered block adaptive coding algorithm (MLBA)and a multi-layered block adaptive com-pressed sensing codec method (MLBACS)are proposed.According to its regional structure,the image is divided into blocks of different layers and different sizes,which are allocated different sampling rates.Simulation results show that the sampling num-ber of MLBACS is less than traditional compressed sensing at a single sampling rate,with the same reconstruction performance.
作者 孙骏 郭继昌
出处 《中国科技论文》 CAS 北大核心 2014年第7期817-820,共4页 China Sciencepaper
基金 高等学校博士学科点专项科研基金资助项目(20120032110034)
关键词 图像处理 压缩感知 采样数目 多层分块自适应编码算法 多层分块自适应压缩感知编解码方法 image processing compressed sensing the number of sampling multi-layered block adaptive coding algorithm multi-layered block adaptive compressed sensing codec method
  • 相关文献

参考文献10

  • 1Donoho D L. Compressed sensing [J]. IEEE Transac- tions on Information Theory, 2006, 52(4) : 1289-1:306. 被引量:1
  • 2Candes E J, Tao T. Decoding by linear programming [J]. IEEE Transactions on Information Theory, 2005, 51(12) : 4203-4215. 被引量:1
  • 3Donoho D I., Huo X. Uncertainty principles and ideal atomic decomposition [J]. IEEE Transactions on Infor- marion Theory, 2001, 47(7): 2845-2862. 被引量:1
  • 4Baraniuk R G. Compressive sensing [J]. IEEE Signal Processing Magazine, 2007, 24(4) : 118-121. 被引量:1
  • 5Cand's E J, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly in- complete frequency information [J]. IEEE Transactions on Information Theory, 2006, 52(2) : 489 -509. 被引量:1
  • 6Bajwa W U, Haupt J D, Raz G M, et al. Toeplitz- structured compressed sensing matrices [C]//IEEE 14th Workshop on Statistical Signal Processing. Madi- son, USA, 2007: 294-298. 被引量:1
  • 7DeVore R A. Deterministic constructions of compressed sensing matrices [J]. Journal of Complexity, 2007, 23 (4/5/6) : 918-925. 被引量:1
  • 8杨爱萍,张金霞,钟腾飞,等.分块OSTM测量矩阵构造及自适应压缩感知算法[J/OL].[2014-01-07].http://www.cnki.net/kems/doi/10.11784.tdx-bz201211006.html. 被引量:1
  • 9Pun T. Entropic thresholding, a new approach [J]. Computer Graphics and Image Processing, 1981, 16 (3): 210-239. 被引量:1
  • 10Pati Y C, Rezaiifar R, Krishnaprasad P S. Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition [C]//27th Asilomar Conference on Signals, Systems & Comput- ers. Pacific Grove, USA, 1993: 40-44. 被引量:1

同被引文献31

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部