摘要
研究相空间中含时滞的非保守力学系统的Noether对称性与守恒量。建立含时滞的非保守系统动力学的Hamilton正则方程;依据相空间中含时滞的Hamilton作用量在无限小群变换下的广义准不变性,给出相空间中含时滞的Noether广义准对称变换的定义和判据;并建立相空间中含时滞的非保守力学系统的Noether对称性与守恒量之间的联系。文末,举例说明结果的应用。
The Noether symmetries and the conserved quantities for nonconservative mechanical systems with time delay in phase space are studied .Firstly, the Hamilton canonical equations with time delays for the non-conservative systems are established .Secondly , according to the generalized quasi-invariance of the Hamilton action with time delay in phase space under the infinitesimal transformations of groups , the definitions and criterion of the Noether generalized quasi-symmetric transformations with time delay in phase space are given .Lastly, the relationship between the Noether symmetries and the conserved quanti-ties with time delay in phase space are established .At the end , an example is given to illustrate the ap-plication of the results .
出处
《中山大学学报(自然科学版)》
CAS
CSCD
北大核心
2014年第4期56-61,共6页
Acta Scientiarum Naturalium Universitatis Sunyatseni
基金
国家自然科学基金资助项目(10972151
11272227)
苏州科技学院研究生科研创新计划资助项目(SKCX12S-039)
关键词
非保守系统
NOETHER对称性
时滞
相空间
守恒量
nonconservative system Noether generalized quasi-symmetry time delay phase space conserved quantity