摘要
主要研究修正Camassa-Holm方程的Cauchy问题。首先提出了一个新的爆破结果,这一结果优化了早先获得的一些结果;然后证明了修正Camassa-Holm方程的Cauchy问题在解对初值不一致连续依赖意义下在空间H^3(R),s<3/2中不适定。
The Cauchy problem of the modified Camassa-Holm equation is mainly studied .First, a new blow-up phenomenon which is an improvement of the earlier ones is presented .Then it is proved that the Cauchy problem for the modified Camassa-Holm equation is not locally well-posedness in the sense that its solution does not depend uniformly continuously on the initial data .
出处
《中山大学学报(自然科学版)》
CAS
CSCD
北大核心
2014年第4期8-12,共5页
Acta Scientiarum Naturalium Universitatis Sunyatseni
基金
国家自然科学基金资助项目(11101337)
教育部新教师博士点基金资助项目(20110182120013)
中央高校基本科研业务费专项资金资助项目(XDJK2011C046)
西南大学博士基金资助项目(SWU110035)