期刊文献+

基于多核学习的在线非线性自适应滤波算法 被引量:3

Online nonlinear adaptive filtering based on multi-kernel learning algorithm
下载PDF
导出
摘要 在在线非线性自适应滤波应用中,由于基于多核学习的算法具有更高自由度并且能够利用更多数据特征,相比基于单核学习的算法在性能上有很大提升。首先给出具有相同"字典"的多核仿射投影算法,该算法是多核学习方法和仿射投影算法的结合。然后基于相干准则针对多核仿射投影算法的特例,对应不同高斯核带宽,利用相干稀疏准则构造不同"字典",提出利用自适应l1-范数正则项来解决归一化多核最小均方非线性自适应滤波算法在非平稳信号下"字典"存在冗余核函数的问题。最后数值仿真结果与比较验证了所提算法的有效性。 The performance of the multi-kernel learning algorithm possesses higher degree of freedom and uses more features of data,which outperforms the mono-kernel methods in online nonlinear adaptive filtering applications.The multi-kernel affine projection algorithm with the same dictionary is presented,which is an umbrella of multiple-kernel learning and affine projection methods.As the particular case of multi-kernel affine projection building almost distinct dictionary corresponding to different Gaussian kernel band-widths based on coherence sparsification critera,multi-kernel normalized least-mean-square with adaptive l 1-norm regularization for update of dictionary is also proposed to overcome the drawback that the obsolete kernel functions cannot be discarded in non-stationary environment.Simulation results show the effectiveness of the proposed methods.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2014年第8期1473-1477,共5页 Systems Engineering and Electronics
基金 国家自然科学基金(61271415) 水下信息处理与控制国家重点实验室基金(9140C231002130C23085)资助课题
关键词 非线性自适应滤波 多核在线学习 l1-范数正则 高斯核函数 nonlinear adaptive filtering multi-kernel learning l 1-norm regularization Gaussian kernel function
  • 相关文献

参考文献18

  • 1Leslie C S, Eskin E, Noble W S. The spectrum kernel: a string kernel for SVM protein classifieation[C] // Proc. of the Pacific Symposium on Biocomputing, 2002 : 566 - 575. 被引量:1
  • 2Bach F R, Lanckriet G R G, Jordan M I. Multiple kernel lear- ning, conic duality, and the SMO algorithm[C]//Proc, of the 21st International Conference on Machine Learning, 2004. 被引量:1
  • 3Boureau Y L, Bach F R, LeCun Y, et al. Learning mid-level features for recognition[C]//Proc, of the Computer Vision and Pattern Recognition, 2010:2559 - 2566. 被引量:1
  • 4Blankertz B, Lemm S, Treder M, et al. Single-trial analysis and classification of ERP components a tutorial[J]. NeuroImage, 2011, 56(2): 814-825. 被引量:1
  • 5Arenas Garcia J, Petersen K, Camps Valls G, et al. Kernel multi variate analysis framework for supervised subspace learning: a tutorial on linear and kernel multivariate methods[J]. IEEE Signal Pro cessing Magazine, 2013,30(4) : 16 - 29. 被引量:1
  • 6Engel Y, Mannor S, Meir R. Kernel recursive least squares[J]. IEEE Trans. on Signal Processing, 2004, 52(8) : 2275 - 2285. 被引量:1
  • 7Slavakis K, Theodoridis S. Sliding window generalized kernel af fine projection algorithm using projection mapping[J]. European Association for Signal Processing Journal on Advances in Sig- nal Processing, 2008 : ID 735351. 被引量:1
  • 8Richard C, Bermudez J C M, Honeine P. Online prediction of time series data with kernels[J]. IEEE Trans. on Signal Pro cessing, 2009, 57(3) : 1058 - 1067. 被引量:1
  • 9Liu W F, Park I M, Wang Y, et al. Extended kernel recursive least squares algorithm[J]. IEEE Trans. on Signal Processing, 2009, 57(10) : 3801 -3814. 被引量:1
  • 10Chen B D, Zhao S, Zhu P, et al. Online kernel least-mean- square algorithm[J]. IEEE Trans. on Neural Networks and Learning Systems, 2012, 23(1) : 22 - 32. 被引量:1

二级参考文献3

共引文献155

同被引文献21

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部