摘要
本文研究下面的非周期离散非线性Schrdinger方程:-△u_n+v_nu_n-wu_n=g_n(u_n),n∈Z,其中V={v_n}_(n∈Z)和g_n都是非周期的,当|n|→∞时,v_n→+∞,并且时间频率w∈R可以满足下面的任何一种情形:(1)w属于算子-△+V的一个有限谱间隔;(2)w<infσ(-△+V);(3)w∈σ(-△+V),其中σ(-△+V)表示-△+V的谱.本文将用一些局部条件(在无穷远或零处)来代替一些全局条件.利用变化的喷泉定理,当非线性项在无穷远处是超线性时,本文得到这个方程的无穷多个非平凡孤立子,并且,也得到指数衰减的孤立子的存在性.
We study the non-periodic discrete nonlinear Schrodinger equation -△u_n+v_nu_n-wu_n=g_n(u_n),n∈Z where the discrete potential V = {vn}n∈z and gn are non-periodic, vn→ +∞ as |n| →+∞and the temporal frequency ω∈R is allowed to satisfy any one of the following three cases: (1) w belongs to a finite spectral gapof the operator -△ + V; (2) ω 〈 infδ(-△ + V); (3) ω∈σ(-△ + V), where σ(-△ + V) denotes the spectrum of -△+ V. We replace some global conditions by some local conditions (at infinitely or at zero) and obtain infinitely many nontrivial solitons of this equation with super linear nonlinearities by a variant fountain theorem. In particular, we also obtain the existence of nontrivial exponentially decaying solitons.
出处
《中国科学:数学》
CSCD
北大核心
2014年第8期843-856,共14页
Scientia Sinica:Mathematica
基金
国家自然科学基金(批准号:11326113)资助项目