期刊文献+

带有无界势和一般时间频率的非周期离散非线性Schrdinger方程:无穷多个孤立子 被引量:2

Non-periodic discrete nonlinear Schrodinger equations with unbounded potentials and general temporal frequencies:Infinitely many solitons
原文传递
导出
摘要 本文研究下面的非周期离散非线性Schrdinger方程:-△u_n+v_nu_n-wu_n=g_n(u_n),n∈Z,其中V={v_n}_(n∈Z)和g_n都是非周期的,当|n|→∞时,v_n→+∞,并且时间频率w∈R可以满足下面的任何一种情形:(1)w属于算子-△+V的一个有限谱间隔;(2)w<infσ(-△+V);(3)w∈σ(-△+V),其中σ(-△+V)表示-△+V的谱.本文将用一些局部条件(在无穷远或零处)来代替一些全局条件.利用变化的喷泉定理,当非线性项在无穷远处是超线性时,本文得到这个方程的无穷多个非平凡孤立子,并且,也得到指数衰减的孤立子的存在性. We study the non-periodic discrete nonlinear Schrodinger equation -△u_n+v_nu_n-wu_n=g_n(u_n),n∈Z where the discrete potential V = {vn}n∈z and gn are non-periodic, vn→ +∞ as |n| →+∞and the temporal frequency ω∈R is allowed to satisfy any one of the following three cases: (1) w belongs to a finite spectral gapof the operator -△ + V; (2) ω 〈 infδ(-△ + V); (3) ω∈σ(-△ + V), where σ(-△ + V) denotes the spectrum of -△+ V. We replace some global conditions by some local conditions (at infinitely or at zero) and obtain infinitely many nontrivial solitons of this equation with super linear nonlinearities by a variant fountain theorem. In particular, we also obtain the existence of nontrivial exponentially decaying solitons.
出处 《中国科学:数学》 CSCD 北大核心 2014年第8期843-856,共14页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11326113)资助项目
关键词 非周期离散非线性 SCHRODINGER方程 无穷多个非平凡孤立子 无界势 超线性 变化的喷泉定理 non-periodic discrete nonlinear SchrSdinger equations, infinitely many nontrivial solitons, un-bounded potentials, superlinear, variant fountain theorem
  • 相关文献

参考文献37

  • 1Christodoulides D N, Lederer F, Silberberg Y. Discretizing light behaviour in linear and nonlinear waveguide lattices. Nature, 2003, 424:817-823. 被引量:1
  • 2Kopidakis G, Aubry S, Tsironis G P. Targeted energy transfer through discrete breathers in nonlinear systems, Phys Rev Lett, 2001, 87:165501. 被引量:1
  • 3Livi R, Franzosi R, Oppo G-L. Self-localization of Bose-Einstein condensates in optical lattices via boundary dissipation. Phys Rev Lett, 2006, 97:060401. 被引量:1
  • 4Fleischer J W, Cartoon T, Segev M, et al. Observation of discrete solitons in optically induced real time waveguide arrays. Phys Rev Lett, 2003, 90:023902. 被引量:1
  • 5Fleischer J W, Segev M, Efremidis N K, et al. Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices. Nature, 2003, 422:147- 150. 被引量:1
  • 6Aubry S, Kopidakis G, Kadelburg V. Variational proof for hard discrete breathers in some classes of Hamiltonian dynamical systems. Discrete Contin Dyn Syst Ser B, 2001, 1:271-298. 被引量:1
  • 7Cuevas J, Kevrekidis P G, Frantzeskakis D J, et al. Discrete solitons in nonlinear Schr6dinger lattices with a power-law nonlinearity. Phys D, 2009, 238:67-76. 被引量:1
  • 8James G. Centre manifold reduction for quasilinear discrete systems. J Nonlinear Sci, 2003, 13:27-63. 被引量:1
  • 9MacKay R S, Aubry S. Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators. Nonlinearity, 1994, 7:1623-1643. 被引量:1
  • 10Arioli G, Gazzola F. Periodic motions of an infinite lattice of particles with nearest neighbor interaction. Nonlinear Anal, 1996, 26:1103-1114. 被引量:1

同被引文献35

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部