摘要
综合考虑发射电子的发射能量、发射角度及微波场的相位分布等因素,运用统计方法,研究了介质表面单边次级电子倍增过程中次级电子数目、瞬时直流场、渡越时间、微波场的沉积功率等次级电子倍增特征物理量随碰撞次数的变化过程,仿真分析了不同夹角、不同反射系数对次级电子倍增的影响。研究结果表明:当倾斜直流场一定时,微波场的反射系数越小,雪崩击穿的延迟时间越长,饱和状态下的次级电子数目越大;微波场一定时,当直流电场平行于介质板表面时,直流电场幅值越大,雪崩击穿的延迟时间越长,饱和状态下的次级电子数目越大,但当电场强度超过一定值时,次级电子倍增现象不再发生,当直流场垂直介质板表面,直流电场幅值越大,雪崩击穿的延迟时间越长,饱和状态下的次级电子数目越小,幅值超过一定值时,次级电子倍增现象同样不会发生。
A statistical method is used to analyze the evolutions of the important physical values in the dielectric single-sur- face multipactor discharge process with the number of collisions, such as the number of second emission electron, DC field, de- posited power on dielectric, and electron transit time, considering the emission energy and launch angles of the emitted electrons, the phase distribution of the RF field. How angles and reflection coefficients affect the multipactor is also studied. The results show that when a certain tilt dc field is imposed, the smaller the reflection coefficient is, and the longer the delay time of the ava- lanche breakdown and the greater the number of secondary emission electrons in the steady state are. When the dc field is parallel to the surface of the dielectric plate and the RF field is specified, the higher the electric field amplitude is, the longer the delay time of the avalanche breakdown is and the greater the number of secondary emission electrons in the saturation are, but if the amplitude exceeds a certain value, the multipactor will not occur. When the DC is vertical to the surface of the dielectric plate, the higher the electric field amplitude is, the longer the delay time of the avalanche breakdown is and the smaller the number of the secondary electron in saturation are. Similarly, if the amplitude exceeds a certain value, the multipactor will also not occur.
出处
《强激光与粒子束》
EI
CAS
CSCD
北大核心
2014年第8期179-184,共6页
High Power Laser and Particle Beams
基金
国家自然科学基金项目(61201056
61271104)
关键词
高功率微波
线极化微波场
强直流场
介质单边次级电子倍增
统计方法
high power microwave
linearly polarized electromagnetic wave
strong DC field
dielectric single surfacemultipactor discharge
statistical method