期刊文献+

基于粗糙集的数据发布多约束匿名保护方法 被引量:1

Anonymous preservation method for data publication based on rough set and multiple constraints
下载PDF
导出
摘要 针对传统匿名算法采用相同的匿名强度实现k-划分,常导致所要发布数据的隐私保护程度与数据可用性之间失衡的问题,提出一种基于粗糙集属性重要度的多约束匿名化方法。根据准标识符属性重要度的差别,对准标识符属性维度进行自动划分,实现多约束匿名参数的设计,对具有不同维度的划分进行相应的匿名化操作。基于粗糙集理论和信息熵理论,设计了一种分类型数据可用性评估模型。从数据泛化后的信息损失、等价类对集合划分导致的信息熵改变两方面综合评估匿名化数据表的信息损失量。实验结果表明,采用该方法能够较好地实现数据的隐私保护和数据可用性之间的平衡。 To erase the imbalance phenomenon between the privacy protection and the utility of anonymized data caused by identifying all attributes having the same importance degree in the traditional algorithm, a multi-constraint anonymous method based on the attribute significance of the rough set was proposed, which took into account the influence caused by various quasi-identi- fier attributes. The dimension division was carried out automatically according to the quasi-identifier attributes significance and thereby the design of multi-constraint anonymous parameters was realized. After that, an anonymous operation was executed on the separate partition. Additionally, a model for evaluating the utility of anonymized data based on both the rough set theory and the information entropy theory was designed, which comprehensibly evaluated the information loss of anonymized data by considering the information loss of generated attribute values and the change of the information entropy caused by using equivalence classes to partition the data set. Experimental results show that the method better balances the privacy protection degree and the data availability.
出处 《计算机工程与设计》 CSCD 北大核心 2014年第8期2769-2772,2784,共5页 Computer Engineering and Design
基金 国家自然科学基金项目(61070139) 江西省自然科学基金项目(20114BAB201039)
关键词 数据发布 隐私保护 多约束 粗糙集 属性重要度 data publication privacy preservation multiple constrains rough set attribute significance
  • 相关文献

参考文献11

  • 1任毅,彭智勇,唐祖锴,叶凌青.隐私数据库--概念、发展和挑战[J].小型微型计算机系统,2008,29(8):1467-1474. 被引量:4
  • 2Machanavajjhala A, Gehrke J, Kifer D, et al. 1-diversity: Privacy beyond k-anonymity [C] //Proceedings of the 22nd In- ternational Conference on Data Enginee-ring. IEEE Computer Society, 2006: 24-35. 被引量:1
  • 3Li N, Li T, Venkatasubramanian S. T-closeness: Privacy be- yond k-anonymity and 1-diversity [C] //Proceedings of the 23rd International Conference on Data Engineering. IEEE, 2007: 106-115. 被引量:1
  • 4Zhang Q, Koudas N, Srivastava D, et al. Aggregate query an- swering on anonymized tabIes [C] //Proceedings of the 23rd Inter- national Conference on Data Engineering. IEEE, 2007: 116-125. 被引量:1
  • 5Chen B C, Ramkrishnan R, LeFevre K. Privacy skyIine: Pri- vacy with multidimensional adversarial knowledge [C] //Pro- ceedings of the 33rd International Conference on Very Large DataBases. ACM, 2007: 770-781. 被引量:1
  • 6刘玉葆,黄志兰,傅慰慈,印鉴.基于有损分解的数据隐私保护方法[J].计算机研究与发展,2009,46(7):1217-1225. 被引量:21
  • 7Martin D, Kifer D, Machanavajjhala A, et al. Worst-case background knowledge in privacy [C] //Proceedings of the 23rd International Conference on Data Engineering. IEEE, 2007: 116-125,. 被引量:1
  • 8刘明,叶晓俊.个性化K-匿名模型[J].计算机工程与设计,2008,29(2):282-286. 被引量:11
  • 9王璐,邱桃荣,何妞,刘萍.基于粗糙集和蚁群优化算法的特征选择方法[J].南京大学学报(自然科学版),2010,46(5):487-493. 被引量:19
  • 10苗夺谦,李道国著..粗糙集理论、算法与应用[M].北京:清华大学出版社,2008:326.

二级参考文献49

共引文献56

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部