期刊文献+

MapReduce框架下的实时大数据图像分类 被引量:6

Real-Time Big Data Image Classification under MapReduce Framework
下载PDF
导出
摘要 图像数据作为大数据的重要组成部分蕴含着丰富的知识,且图像分类有着广泛的应用,利用传统分类方法已经无法满足实时计算的需求.针对此问题,提出并行在线极端学习机算法.首先利用在线极端学习机理论得到隐层输出权值矩阵;其次根据MapReduce计算框架的特点对该矩阵进行分割,以代替原有大规模矩阵累乘操作,并将分割后的多个矩阵在不同工作节点上并行计算;最后将计算节点上的结果按键值合并,得到最终的分类器.在保证原有计算精度的前提下,将文中算法在MapReduce框架上进行拓展,以人脸图像为例对大规模图像数据进行分类的结果表明,该算法能够针对大数据图像进行快速、准确的分类. As an important part of big data,image data contains abundant knowledge.The classification of image data has been widely used,while nowadays,the traditional classification methods are unable to meet the need of real-time computing.To solve this problem,we propose a parallel online extreme learning machine algorithm.Firstly,with the theory of online extreme learning machine,we calculate the output weight matrix of hidden layer nodes.Secondly,this matrix is partitioned to several matrix blocks based on the characteristics of the MapReduce framework so as to substitute the original large-scale matrix multiplication operation,and the matrix blocks are calculated in different work nodes in parallel.Finally,the values in calculation nodes are merged by the key values and we get the classifier.Under the premise that the original calculation accuracy is guaranteed,we extend the online extreme learning machine algorithm to the MapReduce framework and the classification experiment results on massive image data,taking facial image data as an example,show that the algorithm in this paper can classify massive image data fast and accurately.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2014年第8期1263-1271,共9页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61173163 51105052 61370200)
关键词 大数据 MAPREDUCE 在线极端学习机 人脸识别 big data MapReduce online sequential extreme learning machine face recognition
  • 相关文献

参考文献25

  • 1Phillips P J,Grother P,Micheals R J,et al.Face recognition vendor test 2002 [C]//Proceedings of IEEE International Workshop on Analysis and Modeling of Face and Gestures.Los Alamitos:IEEE Computer Society Press,2003:NISTIR 6965. 被引量:1
  • 2Zhao W,Chellappa R,Rosenfeld A,et al.Face recognition:a literature survey [J].ACM Computing Surveys,2003,35(4):399-458. 被引量:1
  • 3周激流,张晔.人脸识别理论研究进展[J].计算机辅助设计与图形学学报,1999,11(2):180-184. 被引量:65
  • 4Xiang S M,Nie F P,Meng G F,et al.Discriminative least squares regression for multiclass classification and feature selection [J].IEEE Transactions on Neural Networks and Learning Systems,2012,23(11):1738-1754. 被引量:1
  • 5Bottou L,Cortes C,Denker J,etal.Comparison of classifier methods:a case study in handwritten digit recognition [C]//Proceedings of the 12th International Conference on Pattern Recognition.Los Alamitos:IEEE Computer Society Press,1994,2:77-82. 被引量:1
  • 6Zong W,Huang G B.Face recognition based on extreme learning machine [J].Neuroeomputing,2011,74(16):2541-2551. 被引量:1
  • 7Allwein E L,Schapire R E,Singer Y.Reducing multiclass to binary:a unifying approach for margin classifiers [J].The Journal of Machine Learning Research,2001,1:113-141. 被引量:1
  • 8Crammer K,Singer Y.On the learnability and design of output codes for multiclass problems [J].Machine Learning,2002,47(2/3).201-233. 被引量:1
  • 9Eibl G,Pfeiffer K P.Multiclass boosting for weak classifiers [J].The Journal of Machine Learning Research,2005,6(Feb),189-210. 被引量:1
  • 10Samaria F S.Face recognition using hidden Markov models [D].Cambridge:University of Cambridge,1994. 被引量:1

二级参考文献18

共引文献64

同被引文献72

  • 1Amndjelovic O, Shakhnarovich G, Fisher J, et al. Face recognition with image sets using manifold density di- vergence[C]. Computer Vision and Pattern Recognition,2005. CVPR 2005. IEEE Computer Society Conference on. IEEE, 2005, 1: 581-588. 被引量:1
  • 2Cardinaux F, Sanderson C, Bengio S. User authentication via adapted statistical models of face images [J]. Signal Processing, IEEE Transactions on, 2006, 54(1): 361-373. 被引量:1
  • 3Hadid A, PietikNnen M. Manifold learning for vid- eo-to-video face recognition[M].Biometric ID Manage- ment and Multimodal Communication. Springer Berlin Heidelberg, 2009: 9-16. 被引量:1
  • 4Yang W, Sun C, Zhang L. A multi-manifold discriminant analysis method for image feature extraction [J]. Pattern Recognition, 2011, 44(8): 1649-1657. 被引量:1
  • 5Tropp J A, Gilbert A C, Strauss M J. Algorithms for si- multaneous sparse approximation. Part I: Greedy pursuit [J]. Signal Processing, 2006, 86(3): 572-588. 被引量:1
  • 6Chen J, Huo X. Theoretical results on sparse representa- tions of multiple-measurement vectors [J]. Signal Processing, IEEE Transactions on, 2006, 54(12): 4634-4643. 被引量:1
  • 7Sanin A, Sanderson C, Harandi M T, et al. Spa- do-temporal covariance descriptors for action and gesture recognition[C]. Applications of Computer Vision (WACV), 2013 IEEE Workshop on. IEEE, 2013:103-110. 被引量:1
  • 8Lee K C, Ho J, Yang M H, et al. Video-based face recog- nition using probabilistic appearance manifolds[C]. Computer Vision and Pattern Recognition, 2003. Pro- ceedings. 2003 IEEE Computer Society Conference on. IEEE, 2003:313-320. 被引量:1
  • 9Leibe B, Schiele B. Analyzing appearance and contour based methods for object categorization[C]. Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on. IEEE, 2003:409-415. 被引量:1
  • 10Kim T K, Wong K Y K, Cipolla R. Tensor canonical cor- relation analysis for action classification[C].Computer Vision and Pattern Recognition, 2007. CVPR'07. IEEE Conference on. IEEE, 2007: 1-8. 被引量:1

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部