期刊文献+

云环境下基于神经网络和群搜索优化的资源分配机制 被引量:12

Resource Allocation Scheme Based on Neural Network and Group Search Optimization in Cloud Environment
下载PDF
导出
摘要 在云环境下,各种闲置资源可以通过池化形成资源池,进而利用虚拟化技术将资源池中的不同资源组合以服务的形式提供给用户使用,因此需要合理而有效的机制来分配资源.针对云环境下资源的特点,将经济学和智能方法相结合,提出了一种基于双向组合拍卖的智能资源分配机制.在该机制中,提出了基于体验质量(quality of experience,简称QoE)的威望系统,引入威望衰减系数和用户信誉度,降低拍卖中恶意行为造成的影响,为资源交易提供QoE支持.对拍卖中的竞价决策,综合考虑多种因素,提出了基于BP神经网络的竞标价格决策机制,不仅可以合理确定竞标价,而且使价格可以动态适应市场变化.最后,由于组合拍卖胜标确定问题是NP完全的,因此引入群搜索优化算法,以市场盈余和总体威望为优化目标,得到资源分配方案.仿真研究结果表明,该机制是可行和有效的. In cloud environment, all kinds of idle resources can be pooled to establish a resource pool, and different kinds of resources can be combined as a service to the users through virtualization. Therefore, an effective scheme is necessary for managing and allocating the resources. In this paper, economic and intelligent methods are employed to form an intelligent resource allocation scheme based on double combinatorial auction with respect to the characteristics of resources in cloud environment. In the proposed scheme, a reputation system on the basis of quality of experience (QoE) is devised, and the reputation attenuation coefficient and the user credit degree are introduced to decrease the negative effects of malicious behaviors on resource auctions, providing QoE support to resource dealing. In order to determine bidding price rationally, a bidding price decision mechanism based on back propagation (BP) neural network is presented to comprehensively consider various influence factors to make price adapt to the fluctuating market. Finally, due to the fact that the problem of winner determination in combinatorial auction is NP-complete, a group search optimization algorithm is adopted to find the specific resource allocation solution with market surplus and total reputation optimized. Simulation studies are conducted to demonstrate the feasibility and effectiveness of the proposed scheme.
出处 《软件学报》 EI CSCD 北大核心 2014年第8期1858-1873,共16页 Journal of Software
基金 国家杰出青年科学基金(61225012 71325002) 教育部高等学校博士学科点专项科研基金(20120042130003) 中央高校基本科研业务费专项资金(N110204003 N120104001)
关键词 云计算 双向组合拍卖 体验质量 威望 BP神经网络 群搜索优化 cloud computing double combinatorial auction quality of experience reputation back propagation neural nctwork groupsearch optimization
  • 相关文献

参考文献38

  • 1Rehr JJ, Vila FD, Gardner JP, Svec L, Prange M. Scientific computing in the cloud. Computing in science & Engineering, 2010, 12(3):34-43. [doi: 10.1109/MCSE.2010.70]. 被引量:1
  • 2Niyato D, Chaisiri S, Lee BS. Economic analysis of resource market in cloud computing environment. In: Proc. of the 2009 IEEE Asia-Pacific Services Computing Conf. (APSCC 2009). Piscataway: IEEE Computer Society, 2009. 156-162. [dni: 10.1109/ APSCC.2009.5394127]. 被引量:1
  • 3Buyya R, Abramson D, Venugopal S. The grid economy. Proc. of the IEEE, 2005,93(3):698-714. [doi: 10.1109/JPROC.2004. 842784]. 被引量:1
  • 4Grosu D, Das A. Auctioning resources in grids: Model and protocols. Concurrency and Computation: Practice & Experience, 2006, 18(15):1909-1927. [doi: 10.1002/cpe.1037]. 被引量:1
  • 5Tan Z, Gurd JR. Market-Based grid resource allocation using a stable continuous double auction. In: Proc. of the 8th IEEE/ACM Int'l Conf. on Grid Computing (GRID 2007). Los Alamitos: IEEE Computer Society, 2007. 283-290. [doi: 10.1109/GRID.2007. 4354144]. 被引量:1
  • 6Xia QF, Sun WF, Xu ZC, Li MC. A novel grid resource scheduling model based on extended second price sealed auction. In: Proc. of the 3rd Int'l Syrup. on Parallel Architectures, Algorithms and Programming (PAAP 2010). Piscataway: IEEE Computer Society, 2010. 305-310. [doi: 10.1109/PAAP.2010.49]. 被引量:1
  • 7Qureshi K, Nazir B, Shah MA. Markup based continuous double auction for resource allocation in market grid. Engineering e-Transaction, 2011,6(1):50-54. 被引量:1
  • 8Danak A, Mannor S. Efficient bidding in dynamic grid markets. IEEE Trans. on Parallel and Distributed Systems, 2011,22(9): 1483-1496. [doi: 10A109/TPDS.2011.29]. 被引量:1
  • 9李立,刘元安,马晓雷.基于组合双向拍卖的网格资源分配[J].电子学报,2009,37(1):165-169. 被引量:22
  • 10翁楚良,陆鑫达.一种基于双向拍卖机制的计算网格资源分配方法[J].计算机学报,2006,29(6):1004-1008. 被引量:37

二级参考文献50

  • 1丁箐,陈国良,单九龙,何家华.一个基于证券市场的计算网格环境下的资源分配模型[J].小型微型计算机系统,2003,24(1):14-16. 被引量:5
  • 2翁楚良,陆鑫达.一种基于双向拍卖机制的计算网格资源分配方法[J].计算机学报,2006,29(6):1004-1008. 被引量:37
  • 3李志洁,程春田,黄飞雪,李欣.一种基于序贯博弈的网格资源分配策略[J].软件学报,2006,17(11):2373-2383. 被引量:27
  • 4张沪寅,吴产乐,叶刚,吴黎兵,熊卿.基于网格的任务调度与资源分配有效机制的研究[J].小型微型计算机系统,2007,28(7):1169-1172. 被引量:3
  • 5Yang Jin, Yang Shoubao, Li Maosheng, Fu Qianfei. An autonomous pricing strategy toward market economy in computational grids[ A]. In Proc. of the Int Conf on Information Technology: Coding and Computing [ C ]. Nevada: IEEE Press, 2005.793 - 794. 被引量:1
  • 6P Ghosh, N Roy, S K Das, K Basu. A pricing strategy for job allocation in mobile grids using a non-cooperative bargaining theory framework[J]. Journal of Parallel and Distributed Computing,2005,65( 11 ) : 1366- 1383. 被引量:1
  • 7M Schwind, O Gujo, T Stockheim. Dynamic resource prices in a combinatorial grid system[ A]. In Proc. of the 8th IEEE Int Conf on E-Commerce Technology and 3rd IEEE. Int Conf on ENTERPRISE Computing, E-Commerce, and E-Services [C ]. California: IEEE Press,2006.49- 54. 被引量:1
  • 8Zhao Xiangang, Xu Liutong, Wang Bai,A dynamic price model with demand prediction and task classification in gdd[ A ]. In Proc. of the 6th Int Conf on Grid and Cooperative Computing [ C]. Urumchi: IEEE Press,2007.775 - 782. 被引量:1
  • 9A Das,D Grosu. Combinatorial auction-based protocols for source allocation in grids [ A ]. In Proc. of the 19th IEEE Int Parallel and Distributed Processing Symposium[ C ]. Colorado: IEEE. Press, 2005.23 - 30. 被引量:1
  • 10M Xia, J Stallaert, A B Whinston. Solving the combinatorial double auction problem[ J ]. European Journal of Operational Research, 2005,164( 1 ) :239 - 251. 被引量:1

共引文献102

同被引文献72

引证文献12

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部