期刊文献+

Improved Algorithm of Variable Bandwidth Kernel Particle Filter

Improved Algorithm of Variable Bandwidth Kernel Particle Filter
下载PDF
导出
摘要 Aiming at the large cost of calculating variable bandwidth kernel particle filter and the high complexity of its algorithm,a self-adjusting kernel function particle filter is presented. Kernel density estimation is facilitated to iterate and obtain new particle set. And the standard deviation of particle is introduced in the kernel bandwidth. According to the characteristics of particle distribution,the bandwidth is dynamically adjusted,and the particle distribution can thus be more close to the posterior probability density model of the system. Meanwhile,the kernel density is used to estimate the weight of updating particle and the system state. The simulation results show the feasibility and effectiveness of the proposed algorithm. Aiming at the large cost of calculating variable bandwidth kernel particle filter and the high complexity of its algorithm, a self-adiusting kernel function particle filter is presented. Kernel density estimation is facilitated to iterate and obtain new particle set. And the standard deviation of particle is introduced in the kernel bandwidth. According to the characteristics of particle distribution, the bandwidth is dynamically adjusted, and the particle distribution can thus be more close to the posterior probability density model of the system. Meanwhile, the kernel density is used to estimate the weight of updating particle and the system state. The simulation results show the feasibility and effectiveness of the proposed algorithm.
作者 葛欣 丁恩杰
出处 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第3期303-307,共5页 南京航空航天大学学报(英文版)
基金 Supported by the National Natural Science Foundation of China(60972059) the General Project of Science and Technology of Xuzhou City(XM12B002)
关键词 particle filter kernel density estimation kernel bandwidth SELF-ADJUSTING particle filter kernel density estimation kernel bandwidth self-adjusting
  • 相关文献

参考文献13

  • 1Messaoudi Z, Ouldali A, Oussalah M. Comparison of interactive multiple model particle filter and inter- active multiple model unscented particle filter for tracking multiple manoeuvring targets in sensors ar- ray[C]//IEEE 9th International Conference on Cy- bernetic Intelligent Systems. UK: IEEE, 2010: 1-6. 被引量:1
  • 2Tseng P, Ding Z, Feng K. Cooperative self-naviga-tion in a mixed LOS and NLOS environment [J]. IEEE Transactions on Mobile Computing, 2013, 99 1-15. 被引量:1
  • 3Daroogheh N, Meskin N, Khorasani K. Particle fil- tering for state and parameter estimation in gas tur- bine engine fault diagnostics[C] /// American Control Conference. Washington, USA: IEEE, 2013: 4343- 4349. 被引量:1
  • 4Talha M, Stolkin R. Adaptive fusion of infra-red and visible spectra camera data for particle filter tracking of moving targets [C]// Sensors. Taipei: IEEE, 2012, 1: 1-4. 被引量:1
  • 5Chang C, Ansari R. Kernel particle filter for visual traeking[J]. IEEE Signal Processing Letters, 2005, 12(3) : 242-245. 被引量:1
  • 6Wang Xing. Non-parametric statistics[M]. Beijing. China Renmin University Press, 2005. (in Chinese). 被引量:1
  • 7Chia Y S, Kow W Y, et al. Kernel-based object tracking via particle filter and mean shift algorithm [ C]//1 lth International Conference on Hybrid Intel- ligent Systems. Malacca, Malaysia: IEEE, 2011: 522-527. 被引量:1
  • 8Gustafsson F. Particle filter theory and practice with positioning applications [J]. IEEE Aerospace and Electronic Systems Magazine, 2010, 25(7): 53-81. 被引量:1
  • 9Pouzols F M, Lendasse A. Adaptive kernel smoot- hing regression using vector quantization[C]//2011 IEEE Workshop on Evolving and Adaptive Intelligent Systems. Paris, France: IEEE, 2011: 85-92. 被引量:1
  • 10Joachim S, Jannik F, Bogdan K. Kernel particle fil- ter for real-time 3D body tracking in monocular color images[C]//7th International Conference on Auto- matic Face and Gesture Recognition. Southampton, UK: IEEE Computer Society, 2006, 1: 597-606. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部