摘要
运用分段线性函数描述了零售商损失规避行为,同时利用模糊事件的可信性测度,构建了损失规避零售商的模糊期望效用模型,并揭示了凹性性质。借助变分不等式理论,刻画了制造商、零售商与消费者的最优行为。将制造商与零售商的定价机制纳入到网络均衡条件,构建了供应链网络均衡。此外,为简化网络均衡条件,证明了均衡时制造商的定价机制等价于零售商的定价机制。最后,结合算例讨论了市场需求模糊性、缺货成本以及损失规避系数对网络均衡的影响。
Loss-averse behavior of retailer is described by piecewise-linear function, and the expected utility model of loss- averse retailer is established by credibility measure of fuzzy event, its concavity property is revealed. The optimal behaviors of manufactures, retailers and consumers are modeled by the variation inequality. In order to simplify network equilibrium conditions, it is proved that the pricing mechanisms of manufacturers are equivalent to those of retailers in equilibrium. Then, the supply chain network equilibrium is built. Finally, the impacts of fuzzy demand, shortage cost and loss-averse co- efficient on network equilibrium are illustrated by numerical example.
出处
《软科学》
CSSCI
北大核心
2014年第8期130-136,共7页
Soft Science
基金
国家自然科学基金项目(71371102)
国际(地区)合作与交流项目(71311120090)
山东省自然科学基金项目(ZR2012GM002)
关键词
网络均衡
损失规避
模糊需求
缺货成本
变分不等式
network equilibrium
loss aversion
fuzzy demand
shortage cost
variation inequality