期刊文献+

希尔伯特振动分解在滚动轴承故障诊断中应用 被引量:22

Roller bearing fault diagnosis using Hilbert vibration decomposition
下载PDF
导出
摘要 将希尔伯特振动分解(HVD)应用于滚动轴承故障诊断。在介绍HVD方法原理基础上,与经验模式分解(EMD)进行对比表明,通过仿真信号可分析HVD更高频率分辨率,HVD能有效分解引起EMD模态混叠的含异常事件信号;将HVD用于滚动轴承故障信号分解,选含丰富故障信息分量进行包络分析,利用相应包络谱图识别轴承故障特征频率,进而识别故障模式,并实验验证该方法的有效性。 A new non-stationary signal processing technique called Hilbert vibration decomposition (HVD)was introduced to fault diagnosis of roller bearings.The HVD and empirical mode decomposition (EMD)are both based on Hilbert transform,and both methods can decompose multi-component signals adaptively.However,compared with EMD, the HVD method does not involve spline fitting and empirical algorithms and has a better frequency resolution.Moreover, the HVD method can decompose more effectively the multi-component signals which can cause mode mixing while decomposed by the EMD method.Based on this consideration,the HVD method was applied to the experimental data of roller bearing with induced faults.The envelope analysis was performed on the component including dominant fault information,and then the characteristic defect frequency of roller bearing was identified by means of the envelope spectrum.The experimental results validate the effectiveness of the proposed method for roller bearing fault diagnosis.
出处 《振动与冲击》 EI CSCD 北大核心 2014年第14期160-164,共5页 Journal of Vibration and Shock
关键词 滚动轴承 希尔伯特分解 故障诊断 包络分析 roller bearing HVD fault diagnosis envelope analysis
  • 相关文献

参考文献17

二级参考文献123

共引文献748

同被引文献186

引证文献22

二级引证文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部