期刊文献+

基于柔性基板的异构多芯片三维封装散热仿真与优化设计 被引量:3

Thermal Simulation and Optimization for a 3D Integration Structure Based on Radio Frequency(RF) Multi-chips on Flexible substrate
下载PDF
导出
摘要 随着移动终端的广泛应用,射频多芯片系统封装结构的小型化、系统的集成化将导致功率密度的直线上升,同时,芯片各异性的特点将产生温度分布不均的现象,从而催生亟需解决的热管理问题。针对包含5款芯片的典型的射频前端系统,在POP封装基础上,提出柔性基板封装结构设计方案,并应用ANSYS ICEPAK三维数值分析法进行仿真计算,验证得到如下结果:1柔板同层的温差降低到POP结构的6%,异层的温差降低到POP结构的4%,避免了热点的出现;2柔板封装结温随下层屏蔽罩的厚度增大而减小,但尺寸的变化对其影响相对较小;3与铝基相比,铜屏蔽罩能够起到更好的散热作用。研究结果为射频异构多芯片三维封装优化设计提供了参考方案。 Miniaturization and integration are required in radio frequency (RF) multi-chips packages with the widely spreading of mobile devices.However,it makes the power density go straight up.At the same time,the differences between chips leads to non-homogeneity of whole structure.All above drive the improvement of therrmal management.For the case at hand,a novel structure of flexible substrate for a RF front end system was proposed.The model was based on POP (package on package) package including 5 typical chips.Meanwhile,3D simulation analysis by ANSYS ICEPAK was adopted.Results are as follows.①It is proved to perform excellently in eliminating hot pots by decreasing 6% than the POP's temperature in the same layer,and decreasing 4% than it between two layers.②It shows that the thicker the shield,the lower the junction temperature.However,the size effects little to it.③Compared to Aluminum,copper performs better in heat spreading.All above provides a reference for thermal design.
出处 《科学技术与工程》 北大核心 2014年第19期238-242,共5页 Science Technology and Engineering
基金 国家科技重大专项(2013ZX02501 2011ZX02601-002-02)资助
关键词 多芯片 POP封装 柔性基板 热设计 三维仿真 multi-chip POP package flexible substrate thermal design 3D simulation
  • 相关文献

参考文献3

二级参考文献17

  • 1LU Xiang-you, HUA Ze-zhao, LIU Mei-jing and Cheng Yuan- xia, Journal of Optoelectronics · Laser 20, 5 (2009). 被引量:1
  • 2MA Lu, LIU Jing, MA Kun-quan and Zhou Yi-xin, Journal of Optoelectronics · Laser 20, 1150 (2009). 被引量:1
  • 3Yu Gui-ying, Zhu Xu-ping and Hu Xi-bing, Semiconductor Technology 35,443 (2010). (in Chinese). 被引量:1
  • 4Ank M and Weaver S, Proc. of SPIE, 5530 (2004). 被引量:1
  • 5N. Aizar Abdul Karim, P. A. Aswatha Narayana and K. N. Seetharamu, Microelectronics International 23, 19 (2006). 被引量:1
  • 6Lan Kim, Jong Hwa Choi, Sun Ho Jang and Moo Whan Shin, Thermochimica Acta 455, 21 (2007). 被引量:1
  • 7Young-Woo Kim, Jae-Pil Kim, Jae-Bum Kim and Min-Sung KIM, Joumal of the Korean Physical Society 54, 1873 (2009). 被引量:1
  • 8Theo Treumiet and Vicky Lammens, 22nd IEEE SEMI-THERM Symposium, USA: Senta Clara, 2006. 被引量:1
  • 9Jen-Hau Cheng, Chun-Kai Liu, Yu-Lin Chao and R.-M. Tain, 2005 IEEE International Conference on Yhermoelectrics, USA: Clemson University, 2005. 被引量:1
  • 10ZHANG Hai-bing, LV Yi-jun, CHEN Huan-ting, Li Kai- hang, GAO Yu-lin, CHEN Zhong and CHEN Guo-long, Jour- nal of Optoelectronics · Laser 20, 454 (2009). (in Chinese). 被引量:1

共引文献16

同被引文献37

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部