期刊文献+

改进的K-means算法在维文连体段聚类中的应用 被引量:1

Application of improved K-means algorithm in Uyghur word-part clustering
下载PDF
导出
摘要 在维吾尔文文字识别中,能否有效地聚类将直接影响识别结果的好坏。为改善聚类效果,针对维吾尔文连体段聚类,提出了一种改进的K-means聚类算法。该算法首先采用等间距法多次选择类中心,然后选择最佳码本和利用有效相似比来动态调整聚类个数K,最后完成了连体段聚类。实验结果表明:与传统K-means算法相比,改进的K-means算法得到了较好聚类效果,聚类正确率达90%以上。 In Uyghur character recognition, the effect of the cluster will affect the recognition rate directly. To improve the clustering result, an improved K-means clustering algorithm based on Uyghur word-part is presented. The first step of the method is to select the center of the clustering by using the equal interval method repeatedly in order to select the best codebook, then adjust the number of clustering classes(noted as K)by using an effective similarity ratio dynamically. Finally, the word-part clustering is completed. The experimental results show that:compared with the traditional K-means algorithm, the improved K-means algorithm gets a better result and the clustering accuracy is more than 90%.
出处 《计算机工程与应用》 CSCD 2014年第14期135-138,254,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.61032008 No.61163031 No.60863009)
关键词 维吾尔文文字识别 连体段 聚类算法 等间距法 有效相似比 正确率 Uyghur character recognition word-part clustering algorithm equal interval method effective similarity ratio accuracy
  • 相关文献

参考文献7

二级参考文献32

  • 1李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 2Al-Badr B, Mahmoud A. Survey and bibliography of Arabic optical text recognition [J]. Signal Processing, 1995, 41(1): 49-77. 被引量:1
  • 3Al-Yousefi H, Udpa S. Recognition of Arabic characters [J]. IEEE Trans on PAMI, 1992, 14(8): 853-858. 被引量:1
  • 4Hou H, Andrews H. Cubic splines for image interpolation and digital filtering [J]. IEEE Trans on Acoustics, Speech, and Signal Processing, 1978, 26(6): 508-517. 被引量:1
  • 5Fukunaga K. Introduction to Statistical Pattern Recognition (2nd Edition) [M]. New York: Academic Press, 1990. 被引量:1
  • 6Kimura F, Takashina K, Tsuruoka S. Modified quadratic discriminant functions and the application to Chinese character recognition [J]. IEEE Trans on PAMI, 1987, 9(1): 149-153. 被引量:1
  • 7LIN Xiaofan, DING Xiaoqing, CHEN Ming, et al. Adaptive confidence transform based classifier combination for Chinese character recognition [J]. Pattern Recognition Letters, 1998, 19(10): 975-988. 被引量:1
  • 8Kato N, Suzuki M, Omachi S, et al. A handwritten character recognition system using directional element feature and asymmetric Mahalanobis distance [J]. IEEE Trans on PAMI, 1999, 21(3): 258-262. 被引量:1
  • 9马少平,夏莹,朱小燕.基于模糊方向线素特征的手写体汉字识别[J].清华大学学报(自然科学版),1997,37(3):42-45. 被引量:37
  • 10.[EB/OL].http://www.ics.uci.edu/~mlearn/MLRepository.html,. 被引量:2

共引文献1212

同被引文献8

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部