摘要
The microstructure and magnetostrictive properties were investigated in the Tb doped Fe83Ga17-xTbx(x = 0.05, 0.10, 0.20, 0.30, 0.40, 0.50) bulk rods prepared by melt rapidly quenching. The partial solid solubility of Tb in the Fe-Ga matrix was preliminary detected by the lattice parameters and SEM observation. The matrix keeps A2 structure and the second phase appears surround the grain boundary as x C 0.1. h100 i preferred orientation is also observed for x = 0.1 sample along the axis of the quenched rod. The saturation magnetostriction first increases and maximum value reaches at x = 0.1, and then decreases with Tb addition increasing. The initial increase of the magnetostriction should be associated with the partial solution of Tb in the matrix, the maximum value at x = 0.1 should be attributed to the h100 i preferred orientation, and the decrease of the magnetostriction is correlated with the appearance of the second phase along the grain boundary.
The microstructure and magnetostrictive properties were investigated in the Tb doped Fe83Ga17-xTbx(x = 0.05, 0.10, 0.20, 0.30, 0.40, 0.50) bulk rods prepared by melt rapidly quenching. The partial solid solubility of Tb in the Fe-Ga matrix was preliminary detected by the lattice parameters and SEM observation. The matrix keeps A2 structure and the second phase appears surround the grain boundary as x C 0.1. h100 i preferred orientation is also observed for x = 0.1 sample along the axis of the quenched rod. The saturation magnetostriction first increases and maximum value reaches at x = 0.1, and then decreases with Tb addition increasing. The initial increase of the magnetostriction should be associated with the partial solution of Tb in the matrix, the maximum value at x = 0.1 should be attributed to the h100 i preferred orientation, and the decrease of the magnetostriction is correlated with the appearance of the second phase along the grain boundary.
基金
financially supported by the National Basic Research Program of China (No. 2012CB619404)
the National Natural Science Foundations of China (Nos. 50925101, 51101006, 91016006 and 51221163)
the Fundamental Research Funds for the Central Universities