摘要
用光滑粒子流体动力学(Smoothed Particle Hydrodynamics,简称SPH)方法对函数及其一阶和二阶空间导数核近似进行了详细研究.讨论了几种SPH方法的计算思路,给出了一维、二维和三维情况下分别用CSPH(Corrective SPH)、MSPH(Modified SPH)、SSPH(symmetric SPH)方法,对函数及其一阶和二阶空间导数进行核近似的计算方法,通过一维和二维数值算例,对四种不同的SPH方法进行了比较和误差分析,结果表明MSPH和SSPH方法极大地提高了边界处的精度而且SSPH方法的误差最小.
In this paper , the kernel estimation of a function and its first and second spatial derivative were studied in detail based on smoothed particle hydrodynamics (SPH).The calculation thoughts of the several SPH methods were discussed .Calculation methods of a function and its first and second spatial derivative's kernel estimation were given by CSPH ( Corrective SPH ) , MSPH ( Modified SPH ) , SSPH ( symmetric SPH ) methods in one-dimensional , two-dimensional and three -dimensional cases respectively .Comparison and error analysis of four different SPH methods were carried out by one -dimensional and two-dimensional numerical examples . Results show that MSPH and SSPH methods greatly improved the accuracy of the boundary and the error very small in SSPH method .
出处
《佳木斯大学学报(自然科学版)》
CAS
2014年第4期593-596,600,共5页
Journal of Jiamusi University:Natural Science Edition
基金
国家自然科学基金(51075346)
国家重点基础研究发展计划973项目(2011CB706600)
关键词
光滑粒子流体动力学
核近似
计算思路
误差分析
smoothed particle hydrodynamics
kernel estimation
calculation thought
error analysis