期刊文献+

全变分原理在地震数据去噪中的应用 被引量:4

Application of Variational Principle in Seismic Data Denoising
下载PDF
导出
摘要 地震图像资料的解释和后续处理中的重点环节是如何有效地降除地震资料记录中的噪声。高效的地震资料降噪算法在较好降除噪声的同时可以将图像的边缘信息予以较好的保留。论文首先全面地介绍了全变分去噪模型,同时详细介绍了参数的选取方法,最后进行实验和模型验证。结合小波阈值降噪方法进行比较,实验结果表明全变分降噪方法在很好地消除地震信号图像中的噪声,大面积提高信号剖面质量的同时,可以有效提高地震资料的信噪比。 Noise muffling of seismic records are a significant step in seismic data processing and it is of great importance in processing and interpreting seismic data subsequently .A valid denoising method not only can effectively reduce noise ,but also is good at keeping the edge's information of the image .The analysis of the denoising model on the basis of the total vari-ation method and its parameters'selection are shown in detail .Model test and simulation experience are given .The simula-tion results show that the total variation method demonstrates good effectiveness in eliminating the noises of seismic signals , making great improvement on quality of the profile and the signal to noise ratio for seismic data .Consequently ,conclusion can be made that the total variation method has broad application prospects in seismic data processing .
作者 公成敏
机构地区 渭南师范学院
出处 《计算机与数字工程》 2014年第7期1271-1274,共4页 Computer & Digital Engineering
关键词 全变分 图像去噪 地震信号 total variation image denoising seismic signals
  • 相关文献

参考文献12

  • 1Chambolie A, Lion P. Image recovery total variation minimization and related problems [ J ]. Numerische Mathematik, 1997,76(2) : 167-188. 被引量:1
  • 2Chen Q, Montesinos P, Sun Q S, et al. Adaptive total variation denoising based on difference curvature[J]. Image and Vision Computing, 2010,28(3) : 298-306. 被引量:1
  • 3Chan T, Marquina A, Mulet P. High-order total varia- tion based image restoration[J]. SIAM Journal on Sci- entific Computing, 2000,22 (2) : 503-516. 被引量:1
  • 4Gilboa G, Sochen N, Zeevi Y. Variation denoising of partly-textured images by spatially varying constraints [J]. IEEE Transactions on Image Processing, 2006,15 (8) :281-2289. 被引量:1
  • 5Weickert J. Coherence-enhancing, diffusion filtering [J]. International Journal of Computer Vision, 1999,31 (2):111-127. 被引量:1
  • 6Perona P, Malik J. Scale-space and edge detection u- sing anisotropic diffusion[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12 (7) : 629-639. 被引量:1
  • 7J. Herault, C. Jutten. Space or time adaptive signal processing by Neural Network Models[C]//AIP Conf. Proc, 1986 : 206-211. 被引量:1
  • 8Tong L, Liu R, Soon V. Indeterminacy and identifia- bly of blind identification[J]. IEEE Transactions on Circuits and Systems, 1991,38(5) :499-509. 被引量:1
  • 9P. Comen. Independent component analysis, a new con- cept? [J]. Signal Processing, 1994,36 (3) : 287-314. 被引量:1
  • 10Bell A J, Sejnowski T J. An Information-maximiza- tion approach to blind separation and blind disconsola- tion[J]. Neural Computation, 1995,7(6) : 1004-1034. 被引量:1

同被引文献13

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部