期刊文献+

一种自动计算参数的多密度网格聚类算法 被引量:4

A Multi-density Grid Clustering Algorithm to Calculate Parameters Automatically
下载PDF
导出
摘要 针对多密度数据集聚类的时间复杂度过高和聚类结果对参数设置的依赖性过强的问题,提出了一种自动计算参数的多密度网格聚类算法MGCP,该方法用网格单元的密度和单元间质心距离来构造判别函数,用判别函数的统计信息自动确定参数。实验结果表明,MGCP算法能够有效处理任意形状和不同密度的类,以较小的时间代价获得较高的聚类精度。 Aiming to address the issues of excessive reliance of parameters and long processing time resulted from the high complexity in clustering of multi-density data set ,a multi-density grid clustering algorithm to calculate parameters auto-matically(MGCP) is proposed .This method uses the discriminant function ,which is based on the unit density and the unit centroid distance ,to automatically determine the similar threshold according to the statistical information of discriminant function .The experimental results indicate the MGCP algorithm can effectively process the class with arbitrary shape or dif-ferent densities .This algorithm can achieve a higher cluster precision in a shorter time span .
出处 《计算机与数字工程》 2014年第7期1141-1145,共5页 Computer & Digital Engineering
关键词 网格聚类 邻接单元 判别函数 相似阈值 参数计算 grid clustering adjacent unit discriminant function similar threshold parameter calculation
  • 相关文献

参考文献15

  • 1Z Huang. Extensions to the K-means Algorithms for Clustering Large Date Sets with Categorical Values[J]. Data Mining and Knowledge Discovery, 1998 (2) : 283- 304. 被引量:1
  • 2S Das, A Abraham, A Konar. Automatic Clustering Using an Improved Differential Evolution Algorithm [J]. IEEE Transactions on Systems, Man, and Cyber- netics-Part A: Systems and Humans,2008,38(1) :218- 236. 被引量:1
  • 3顾磊,吴慧中.一种基于遗传算法的减法聚类方法[J].模式识别与人工智能,2008,21(6):758-762. 被引量:2
  • 4S Guha, R Rastogi, S Shim. CURE: an efficient clus- tering algorithm for large databases[C]//Proeeedings of the 1998 ACM SIGMOD International Conference on Management of Data. New York, 1998.73-84. 被引量:1
  • 5G Knrypis, E H Ham, V Komar. CHAMELEON: A Hierarchical Clustering Algorithm Using Dynamic Modeling[J]. IEEE trans on Computer, 1999,32(8) : 68-75. 被引量:1
  • 6L Ertoz, M Steinbach, V Kumar. Finding Clusters of Different Sizes, Shapes, and Densities in Noisy, High Dimensional Data[C]//Canada: SIAM Press, 2003: 1- 12. 被引量:1
  • 7G Esfandani, H Abolhassani. MSDBSCAN: Multi- density scale-independent clustering algorithm based on DBSCAN [ J ]. Pattern Recognition, 2009, 42 : 1193- 1209. 被引量:1
  • 8X Y Chen, Y F Min, Y Zhao, et al. GMDBSCAN: multi-density DBSCAN cluster based on grid [C]//IEEE International Conference on E-Business Engineer- ing, Xian, 2008 : 780-783. 被引量:1
  • 9P A Moellic, J E Haugeard, G Pitel. Image clustering based on a shared nearest neighbors approach for tagged collections[C]//ontario, Canada: CIVR,2008: 269-278. 被引量:1
  • 10Ilango, V Moharu A Survey of Grid Based Clustering Algorithms[J]. International Journal of Engineering Science and Technology, 2010,2 (8) : 3441-3446. 被引量:1

二级参考文献53

共引文献32

同被引文献29

  • 1陈卓,贺明霞,刘相双.基于扩展凝聚点和网格的增量聚类算法[J].哈尔滨工业大学学报,2006,38(8):1382-1385. 被引量:5
  • 2邱保志,沈钧毅.基于扩展和网格的多密度聚类算法[J].控制与决策,2006,21(9):1011-1014. 被引量:25
  • 3刘建晔,李芳.一种基于密度的高性能增量聚类算法[J].计算机工程,2006,32(21):76-78. 被引量:12
  • 4刘青宝,侯东风,邓苏,张维明.基于相对密度的增量式聚类算法[J].国防科技大学学报,2006,28(5):73-79. 被引量:13
  • 5Garmire L X, Garmire D G, Huang W, et al. A global clustering algorithm to identify long intergenic non-coding RNA-with applications in mouse maerophages [ J ]. PIoS One, 2011,6 (9) :e24051. 被引量:1
  • 6Ester M, Kriegel H P, Sander J, et al. Incremental cluste- ring for mining in a data warehousing environment[ C ]// VLDB'98. 1998:323-333. 被引量:1
  • 7Yooseph S, Li W, Sutton G. Gene identification and pro- tein classification in microbial metagenomic sequence dala via incremental clustering [ J ]. BMC Bioinformatics, 2008,9( 1 ) :182. 被引量:1
  • 8Young S, Arel I, Karnowski T P, et al. A fast and stable incremental clustering algorithm [ C ]//2010 Seventh Inter- national Conference on Information Technology:New Gen- erations (ITNG). 2010:204-209. 被引量:1
  • 9Lughofer E. Extensions of vector quantization for incremental clustering[J]. Pattern Recognition, 2008,41 (3) ..995-1011. 被引量:1
  • 10Goyal N, Goyal P, Venkatramaiah K, et al. An efficient density based incremental clustering algorithm in data ware- housing environment [ C ]//2009 International Conference on Computer Engineering and Applications, IPCSIT. 2011,2:482-486. 被引量:1

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部