期刊文献+

复杂问题解决中计算机模拟情境的逻辑框架 被引量:1

The Logic Framework of Computer Simulations in Complex Problem Solving
下载PDF
导出
摘要 计算机模拟情境摆脱了实验室研究和现场研究的不足,满足了复杂问题解决的复杂性、动态性和模糊性等特征,受到研究者们的青睐。近年来,各种模拟情境在复杂问题解决研究中得到运用,其内部逻辑结构主要有线性结构方程和有限状态自动化,线性结构方程适用于等距数据,而有限状态自动化适用于称名数据。当前,对复杂问题解决的测量注重结果,而相对忽视过程。未来的模拟情境可以从问题特征、任务逻辑和测量方式来提高信度和效度。 Computer simulations, free from both the narrow straits of the laboratory and the field study, satisfied the characteristics of complex problem solving, such as complexity, dynamic, and intranpancy. An increasing number ofresearchers have used computer simulations or micro-worlds as research methods to explore the behaviors in complex problem solving situation. Currently, two formal frameworks, linear structural equations (LSE) and finite state automata (FSA), have been widely used in the simulations. Based on the requirement of the systems, two measurement approaches, result-orientation and process-orientation, were developed. However, most research emphasized the results and ignored the process. Fi- nally, the paper proposed possible solutions to improve the quality of computer simulations, including the character of the problem, the logic of task, and the measurement.
出处 《应用心理学》 CSSCI 2014年第2期171-179,共9页 Chinese Journal of Applied Psychology
基金 国家自然青年科学项目(71101128) 国家自然科学项目(71071137) 教育部社科青年项目(10YJC630075)
关键词 复杂问题解决 计算机模拟 线性结构方程 有限状态自动化 complex problem solving, computer-simulation, linear equation system, finite state automata
  • 相关文献

参考文献23

  • 1Brehmer, B. (2005). Micro-worlds and the circular relation between people and their environment. Theoretical Issues in Ergonomics Science, 6 ( 1 ) , 73 -93. 被引量:1
  • 2Brehmer, B. , & Dorner, D. ( 1993 ). Experiments with computer-simulated micro- worlds: Escaping both the narrow straits of the laboratory and the deep blue sea of the field study. Computers in Hu-man Behavior,9 ( 2 - 3 ) : 171 - 184. 被引量:1
  • 3Buchner,A. ,& Funke,J. (1993). Finite state au-tomata: Dynamic task environments in problem solving research. Quarterly Journal of Experimen-tal Psychology ,1993,46A ,83 - 118. 被引量:1
  • 4Buchner,A. ,Funke,J. ,& Berry, D. C. (1995). Negative correlations between control performance and verbalizable knowledge:indicators for implicit learning in process control tasks.'? The Quarterly Journal of Experimental Psychology, 48 ( 1 ) : 166 - 87. 被引量:1
  • 5Engelhart,M. ,Funke,J. ,& Seger,S. (2013). A decomposition approach for a new test-scenario in complex problem solving. Journal of Computer Science. 4. 245 -254. 被引量:1
  • 6Fischer, A. , Greiff, S. , & Funke, J. ( 2012 ). The process of solving complex problems. Journal of Problem Solving ,4,19 - 42. 被引量:1
  • 7Funke, J. ( 1995 ). Experimental research on complex problem solving. In P. Frensch & J. Funke (Eds.) , Complex problem solving: The European perspective. Hillsdale, NJ : Lawrence Erlbaum Asso-ciates. 243 - 268. 被引量:1
  • 8Funke, J. (2001). Dynamic systems as tools for ana-lysing human judgement. Thinking and Reason-ing,7( 1 ) :69 -89. 被引量:1
  • 9Funke ,J. , & Frensch, P. ( 2007 ). Complex problem solving :The European perspective -10 years after. Learning to solve complex scientific problems. Ed. David H. Jonassen. New York:Lawrence Erlbaum Associates,25 - 47. 被引量:1
  • 10Funke, J. (2010). Complex Problem Solving : A Case for Complex Cognition? Cognitive Processing, 11 (2). 133 - 142. 被引量:1

同被引文献1

引证文献1

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部