期刊文献+

大型粮仓建筑高强混凝土强度预测的遗传支持向量机方法研究 被引量:3

STUDY ON GENETIC SUPPORT VECTOR MACHINE METHOD IN STRENGTH PREDICTION OF HIGH STRENGTH CONCRETE FOR CONSTRUCTING LARGE GRANARY
原文传递
导出
摘要 考虑影响混凝土强度的主要因素,基于遗传算法与支持向量机回归原理,建立高强混凝土强度预测的支持向量机模型.该模型利用遗传算法来搜索最佳向量机及核函数参数,以实测混凝土强度数据为样本进行训练,并对测试样本进行预测.结果表明,遗传支持向量机方法泛化能力强,预测精度高,是大型粮仓建筑高强混凝土强度预测的一种有效方法. Considering the main factors influencing concrete strength,a support vector machine model for predicting strength of high-strength concrete based on genetic algorithm and support vector machine regression principle was constnucted. The model searched the optimum vector machine and kernel function parameters by genetic algorithn, was trained by using the real concrete strength data as samples, and was used for predicting a tested sample. The results showed that the genetic support vector machine method had high generalization ability and high prediction precision,and was effective in strength prediction of the high-strength concrete for constructing large granary.
作者 郑冠雨
出处 《河南工业大学学报(自然科学版)》 CAS 北大核心 2014年第3期88-91,104,共5页 Journal of Henan University of Technology:Natural Science Edition
关键词 高强混凝土 支持向量机 遗传算法 混凝土强度 high-strength concrete support vector machine genetic algorithm strength
  • 相关文献

参考文献7

二级参考文献27

  • 1韩彦峰,段向前.人工神经网络在数据挖掘中的应用[J].西安建筑科技大学学报(自然科学版),2005,37(1):121-124. 被引量:14
  • 2赵胜利,刘燕.基于RBF网络的商品混凝土强度预测分析[J].计算机工程,2005,31(18):36-37. 被引量:9
  • 3从爽.面向MATLAB工具箱的神经网络理论与应用[M].合肥:中国科技大学出版社,1998.59-60. 被引量:54
  • 4GBJ 146-90,粉煤灰混凝土应用技术规程[S].北京:中国标准出版社,1990. 被引量:1
  • 5Seung-Chang L.Predietion of concrete strength using artificial neural networks[J].Engineering Structures,2003(25):847-849. 被引量:1
  • 6VAPNIK V,LADIMIR N,The nature of statistical learning theory[M].Springer Verlag,New York,Inc,2000. 被引量:1
  • 7Majcer N,Rajer-kanduc: Novic M. odeling for property prediction from multicomponent analytical data using different neural networks [J]. Anal. Chem. , 1995, 13(67) :2154--2161. 被引量:1
  • 8Wang Dehui, Chen Zhaoyuan, On prediction of compressive strength of mortars with ternary blends of cement, GGBFS and fly ash, Cement and Concrete Research, 1997, 27 (4) : 487-493. 被引量:1
  • 9Kasperkiewicz, J; Racz, J; Dubrawski, A, HPC strength prediction using artificial neural network, Journal of Computing in Civil Engineering, 1995, 9 (4) : 279-284. 被引量:1
  • 10Lai, S ; Sen-a, M, Concrete strength prediction by means of neural network, Construction and Building Materials,1997, 11 (2): 93-98. 被引量:1

共引文献64

同被引文献36

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部