期刊文献+

复杂网络中随机图模型研究 被引量:6

Research on the model of random graphs in complex networks
下载PDF
导出
摘要 随着复杂网络研究的兴起,随机图成为一种重要复杂网络模型。基于完全图的生成子图的思想,得到了生成随机图的一种新算法,即用去边的方法生成随机图的算法,并用数值实验验证了加边和去边生成的随机图的统计特性(最大度、最小度、聚集系数、平均最短路径和平均度)是相近的,用去边的方法得到的图的度分布曲线在其平均度处达到峰值,随后呈指数下降,这与随机图的度分布是相同的。为了得到稀疏连通的随机图,又提出了一个不去割边的近似随机图生成算法,并从理论上说明了该算法生成的图是连通的,同时通过数值实验验证了图的连通性,并与加边随机图的统计特性进行了比较。 With the development of the study of complex networks, random graphs become an important model in complex networks. On the basis of spanned subgraphs of complete graphs, a new algorithm of generating random graphs is proposed by means of removing the edges of a complete graph. It is verified by numerical experiments that the statistical properties (maximum degree, minimum degree, clustering coefficient, average shortest path and the average degree) of the random graphs generated by increasing or removing the edges are similar to each other. The degree distribution of these graphs ob- tained by removing edges reaches the peak at the average degree and then turns to decay exponentially. This is the same as the degree distribution of random graphs. In order to get the sparse connective ran- dom graphs, an approximate random graph generation algorithm without removing cutting edge is pro- posed. And it is theoretically explained that the generated graphs are connected ones. Meanwhile, nu- merical experiments are carried out to verify that the generated graphs are connected, and the comparison of statistical properties is made with the random graphs generated by increasing the edges.
出处 《计算机工程与科学》 CSCD 北大核心 2014年第7期1377-1383,共7页 Computer Engineering & Science
基金 成都信息工程学院中青年学术带头人科研基金资助项目(J201218)
关键词 随机图 完全图 生成子图 复杂网络 连通性 算法 random graph complete graph spanned subgraph complex networks connectivity algorithm
  • 相关文献

参考文献16

  • 1张先迪,李正良主编..图论及其应用[M].北京:高等教育出版社,2005:299.
  • 2汪小帆,李翔,陈关荣编著..复杂网络理论及其应用[M].北京:清华大学出版社,2006:260.
  • 3Newman M E J. Random graphs as models of networks[M]// Handbook of Graphs and Networks, Weinheim: Wiley, 2003. 被引量:1
  • 4Dorogovtsev S N, Goltsev A V,Mendes J F F. Critical phe nomena in complex networks[J]. Reviews of Modern Phys- ics, 2008,80(4) :1275 -1335. 被引量:1
  • 5Bollobds B. Random graphs[ M]. 2nd ed. Cambridge:Cam- bridge University Press,2001. 被引量:1
  • 6ErdOs P,R6nyi A. On random graphs[J]. Publicationes Math- ematicae Debreeen,1959(6) :290 -297. 被引量:1
  • 7ErdOs P. Graph theory and probability[J]. Canadian Journal of Mathematics, 1959(11) :34- 38. 被引量:1
  • 8Bollobds t3. Modern graph theory[M]. New York:Springer, 1998. 被引量:1
  • 9Gilbert EN. Random graphs[J]. Ann. Math. Star. 1959,30 (4) :1141-1144. 被引量:1
  • 10Bollobds B, Thomason A G. Random graphs of small order [J]. Annals of Discrete Mathematics, 1985,28: 47-97. 被引量:1

同被引文献56

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部