期刊文献+

一种无监督约简的浮选泡沫图像特征选择方法及应用 被引量:9

An Unsupervised Reduction Method for the Selection of Flotation Froth Image Characters and Its Application
原文传递
导出
摘要 针对表征矿物浮选工况的泡沫图像特征冗余性大的问题,提出了一种无监督约简的浮选泡沫图像特征选择方法.该方法首先定义敏感性指数,并基于敏感性指数约简得到与工况相关的敏感图像特征集;然后针对敏感图像特征之间的自相关性,提出基于粗糙集属性重要度的敏感图像特征集约简方法;最后将该方法应用于金锑浮选过程,并利用工业现场数据进行测试,证明了该方法的有效性,为基于机器视觉的浮选过程监控创造了条件. Considering the redundancy of froth image characters that reflect the status of the flotation process, an unsupervised reduction method is proposed for selecting froth image characters for flotation. First, a sensitivity index is defined, and sensitive characters are set. These characters, which are strongly related to the status of the flotation process, are obtained through a reduction method based on the sensitivity index. Then, for solving the correlation problem that exists in sensitive image characters, a reduction method for sets of sensitive image characters is developed using rough set attribute importance. Finally, application to the flotation of gold and antimony and tests based on industrial local data demonstrate the method's effectiveness, which improves machine-vision-based process monitoring of froth flotation.
出处 《信息与控制》 CSCD 北大核心 2014年第3期314-317,333,共5页 Information and Control
基金 国家863计划资助项目(2009AA04Z124) 国家自然科学基金资助项目(61134006) 国家杰出青年科学基金资助项目(61025015)
关键词 敏感性指数 特征约简 泡沫浮选 机器视觉 属性重要度 sensitivity index characters reduction froth flotation machine vision attribute importance
  • 相关文献

参考文献10

二级参考文献46

  • 1林小竹,谷莹莹,赵国庆.煤泥浮选泡沫图像分割与特征提取[J].煤炭学报,2007,32(3):304-308. 被引量:28
  • 2岳振军,邱望成,刘春林.一种自适应的多目标图像分割方法[J].中国图象图形学报(A辑),2004,9(6):674-678. 被引量:27
  • 3冯征.一种基于粗糙集的K-Means聚类算法[J].计算机工程与应用,2006,42(20):141-142. 被引量:16
  • 4KAARTINEN J,HATONEN J,HYOTYNIEMI H,et al.Machine vision based control of zinc flotation--A case study[J].Control Engineering Practice,2006,14(12):1455-1466. 被引量:1
  • 5BONIFAZI G,SERRANTI S,VOLPE F,et al.Characterization of flotation froth colour and structure by machine vision[J].Computers & Geosciences,2001,27(9):1111-1117. 被引量:1
  • 6SADR-KAZEMI N,CILLIERS J J.An image processing algorithm for measurement of flotation froth bubble size and shape distributions[J].Minerals Engineering,1997,10(10):1075-1083. 被引量:1
  • 7VENTURA-MEDINA E,CILLIERS J J.Calculation of the specific surface area in flotation[J].Minerals Engineering,2000,13(3):265-275. 被引量:1
  • 8WANG W,BERGHOLM F,YANG B.Froth delineation based on image classification[J].Minerals Engineering,2003,16(3):1183-1192. 被引量:1
  • 9SALEMBIER P,SERRA J.Flat zones filtering connected operators and filters by reconstruction[J].IEEE Transactions on Image Processing,1995,4(8):1153-1160. 被引量:1
  • 10VINCENT L.Morphological grayscale reconstruction in image analysis:applications and efficient algorithms[J].IEEE Transactions on Image Processing,1993,2(2):176-201. 被引量:1

共引文献105

同被引文献47

  • 1卢新国,林亚平,陈治平.一种改进的互信息特征选取预处理算法[J].湖南大学学报(自然科学版),2005,32(1):104-107. 被引量:12
  • 2张海明,李成海,唐雅娟.泡沫浮选分离技术应用进展[J].辽宁化工,2006,35(2):92-95. 被引量:9
  • 3HE M, YANG C, WANG X, et al. Nonparametric density estimation of froth colour texture distribution for monitoring sulphur flotation process [J]. Minerals Engineering, 2013, 53:203 - 212. 被引量:1
  • 4SUPOMO A, YAP E, ZHENG X, et al. PT Freeport Indonesia's mass- pull control strategy for rougher flotation [J]. Minerals Engineering, 2008, 21:808 - 816. 被引量:1
  • 5LIU J J, MACGREGOR J F. Froth-based modeling and control of flotation processes [J]. Minerals Engineering, 2008, 21:642 - 651. 被引量:1
  • 6GAO S Z, WANG J S, GAO X W. Modeling and advanced control method of PVC polymerization process [J]. Journal of Process Con- trol, 2013, 23(5): 664 - 681. 被引量:1
  • 7LI H X, YANG J L, ZHANG G, et al. Probabilistic support vector machines for classification of noise affected data [J]. Information Sci- ences, 2013, 221:60 - 71. 被引量:1
  • 8ABIYEV R H, KAYNAK O. Type 2 Fuzzy neural structure for iden- tification and control of time-varying plants [J]. 1EEE Transactions on Industrial Electronics, 2010, 57(12): 4147 - 4159. 被引量:1
  • 9LEE J M, YOO C K, CHOI S W, et al. Nonlinear process monitoring using kernel principal component analysis [J]. Chemical Engineering Science, 2004, 59(1): 223 - 234. 被引量:1
  • 10耿增显,柴天佑.基于案例推理的浮选过程智能优化设定[J].东北大学学报(自然科学版),2008,29(6):761-764. 被引量:18

引证文献9

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部