期刊文献+

Some Results of a Certain Odd Perfect Numb er 被引量:1

Some Results of a Certain Odd Perfect Numb er
下载PDF
导出
摘要 Define the total number of distinct prime factors of an odd perfect number n asω(n). We prove that if n is an odd perfect number which is relatively prime to 3 and 5 and7, then ω(n) ≥ 107. And using this result, we give a conclusion that the third largest prime factor of such an odd perfect number exceeds 1283.
作者 ZHANG Si-bao
出处 《Chinese Quarterly Journal of Mathematics》 CSCD 2014年第2期167-170,共4页 数学季刊(英文版)
基金 Foundation item: Supported by the Science Foundation of Kashgar Teacher's College(112390)
关键词 odd perfect numbers the total number of distinct prime factors the thirdlargest prime factor odd perfect numbers the total number of distinct prime factors the third largest prime factor
  • 相关文献

参考文献2

二级参考文献14

  • 1Guy R K. Unsolved problems in number theory [M]. New York-Berlin: Springer-Verlsg, 1981. 被引量:1
  • 2Sylvester J J. Sur inpossibilite de existence dun number padait qui ne contient pas moins 5 diviseurs distincts [ J]. Compte Rendus CVI, 1888, 20: 522-526. 被引量:1
  • 3Dickson L E. Finiteness of the odd perfect and primitive abundant nurpbers with distinct primes factors [ J]. Amer J Math, 1913, 35: 413-422. 被引量:1
  • 4Kandold D H J. Folgenungen aus dem vorkommen einer gauβschen primzahl in der primfaktorzerlegung enier ungeraden vollkommenen zahl.[J]. J Reine Angen Math, 1949, 186: 25-29. 被引量:1
  • 5Ktihnel U. Verscharfung der notwendigen bedinggungen far die exlstenz yon ungeraden vorkommen zahlen [ J]. Math I , 1949, 52 : 202- 211. 被引量:1
  • 6Webber G C. Non-existence of odd perfect numbers of the 3Zap"pl2al ,..p2,^28, [j]. Duke Math J, 1951, 18 : 741-749. 被引量:1
  • 7Gradstein I S. On odd perfect numbers [J]. Mat Sb, 1925, 32:476-510. 被引量:1
  • 8Pomerance C. Odd perfect numbers are divisible by at least seven distinct primes [ J]. Acta Arith, 1974, 25: 265-300. 被引量:1
  • 9Chein E Z. An odd perfect number has least 8 prime factors [J]. Notices Math Soc, 1979, 26:365. 被引量:1
  • 10Hagis P. Outline of a proof that every odd perfect number has eight prime factors [ J]. Math Comp, 1980, 35:1027-1032. 被引量:1

共引文献5

同被引文献13

  • 1盖伊.数论中未解决的问题[M].张明尧,译.北京:科学出版社,2003. 被引量:2
  • 2DICKSON L E.History of theory of number[M].Washington:Washington Carnegie Institution,1919. 被引量:1
  • 3BRENT R P,COHEN G L,RIELE H J.Improved techniques for lower bounds for odd perfect numbers[J].Math Comp,1991,57:857-868. 被引量:1
  • 4MICHA E,RAO I.Odd perfect numbers are greater than 101500[J].Math Comp,2012,81(279):1869-1877. 被引量:1
  • 5NIEISEN P P.Odd perfect numbers have at least nine distinct prime factors[J].Math Comp,2007,76:2109-2120. 被引量:1
  • 6GOTO T,OHNO Y.Odd perfect numbers have a prime factor exceeding 108[J].Math Comp,2008,77:1859-1868. 被引量:1
  • 7PASCAL O,MICHA E,RAO I.On the number of prime factors of an odd perfect number[J].Math Comp,2013,83(289):2435-2439. 被引量:1
  • 8MCDANIEL W L,HAGIS P.Some results concerning nonexistence of odd perfect numbers of the formpαm2β[J].The J Fibonnacci Quart,1975,13(1):25-28. 被引量:1
  • 9IANNUCCI D E,SORLI R M.On the total number of prime factors of an odd perfect number[J].Math Comp,2003,72:2078-2084. 被引量:1
  • 10STARNI P.On some properties of the Euler’s factor of certain odd perfect numbers[J].J Number Theory,2006,116(1):483-486. 被引量:1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部