期刊文献+

Locust Behaved Particle Swarm Optimization Technique

Locust Behaved Particle Swarm Optimization Technique
下载PDF
导出
摘要 The collective behavior of certain animals and insects has the characteristic of self-organization. The simple interactions among individuals can produce complex adaptive patterns at the level of the group. Recently,new scientific investigation pointed out that desert locusts show extreme phenotypic plasticity in transforming between the lonely phase and the swarming gregarious phase depending on the population density,which is controlled by a serotonin called 5-hydroxytryptamine( 5HT). In this paper,based on the mechanism of the locusts' collective behavior,a new particle swarm optimization technique called LBPSO is studied. The number of swarms is selfadaptively adjusted by the acquired outstanding particles coming from behind the previous global best solution. The swarm sizes are related to the corresponding serotonin 5HT,which is determined by the optimization parameters such as global best and iteration number. And each swarm adopts one of three rules below according to its density, generalized social evolution strategy, generalized cognition evolution strategy and the independent moving strategy. A comparative study of LBPSO,social particle swarm optimization( SPSO), improved SPSO and the standard particle swarm optimization( StdPSO) on their abilities of tracking optima is carried out. And the results under four static benchmark functions and a dynamic function generator moving peaks benchmark( MPB)show that LBPSO outperforms the other three functions in both static and dynamic landscapes due to the introduced locusts' collective behavior. The collective behavior of certain animals and insects has the characteristic of self-organization. The simple interactions among individuals can produce complex adaptive patterns at the level of the group. Recently, new scientific investigation pointed out that desert locusts show extreme phenotypic plasticity in transforming between the lonely phase and the swarming gregarious phase depending on the population density, which is controlled by a serotonin called 5 - hydroxytryptamine(5HT). In this paper, based on the mechanism of the locusts' collective behavior, a new particle swann optimization technique called LBPSO is studied. The number of swarms is selfadaptively adjusted by the acquired outstanding particles coming from behind the previous global best solution. The swarm sizes are related to the corresponding serotonin 5HT, which is determined by the optimization parameters such as global best and iteration number. And each swann adopts one of three rules below according to its density, generalized social evolution strategy, generalized cognition evolution strategy and the independent moving strategy. A comparative study of LBPSO, social particle swann optimization ( SPSO ), improved SPSO and the standard particle swann optimization (StdPSO) on their abilities of tracking optima is carried out. And the results under four static benchmark functions and a dynamic function generator moving peaks benchmark (MPB) show that LBPSO outperforms the other three functions in both static and dynamic landscapes due to the introduced locusts' collective behavior.
出处 《Journal of Donghua University(English Edition)》 EI CAS 2014年第2期190-196,共7页 东华大学学报(英文版)
基金 Major State Basic Research Development Program of China(No.2012CB720500) National Natural Science Foundations of China(Nos.61174118,21376077,61222303) the Fundamental Research Funds for the Central Universities and Shanghai Leading Academic Discipline Project,China(No.B504)
关键词 evolutionary algorithm particle swarm optimization(PSO) LOCUST collective behavior evolutionary algorithm particle swarm optimization (PSO) locust collective behavior
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部