期刊文献+

基于双曲游散牵引的飞行异常操作数据挖掘 被引量:2

Flight Abnormal Operation Data Mining Based on Stray Traction in Hyperbolic
下载PDF
导出
摘要 飞行资料异常操作数据的有效准确挖掘是保证飞行安全,提高飞行训练水平的关键。提出一种基于双曲模型游散性牵引的飞行资料异常操作数据挖掘算法,针对多层异常操作数据在不同域之间的伪装变换特性,采用双曲非线性模型映射方法,对伪装域进行多层分离,依据访问数据游散性,对数据的深层次特征进行提取,以此为牵引,识别出异常操作数据。采用飞行资料的实际随机异常操作数据进行测试,结果显示,采用基于双曲模型游散性牵引的方法,异常操作数据的识别率达到了100%,在提高飞行安全等领域具有良好的应用价值。 The effective and accurate abnormal operation of flight information data mining is the key to ensure flight safety and the key to improve the level of flight training. An abnormal database access mining algorithm is proposed based on stray traction in hyperbolic model. The data characteristic between different domains is taken out. The hyperbolic nonlinear model mapping method is used. The multi-domain separation of camouflage is extracted out. The couples access to data based on in-depth feature data extraction is finished. Random abnormal operation data are used to do the effective abnormal mining. The test results show that with traction stray hyperbolic model. The identify rate of abnormal access data rates up to 100 %. It has good value for improving the flight security application.
作者 龚健虎
出处 《控制工程》 CSCD 北大核心 2014年第4期617-620,共4页 Control Engineering of China
基金 国家自然科学基金项目(60875948)
关键词 双曲模型 游散性 飞行数据 数据挖掘 hyperbolic model stray flight data data mining
  • 相关文献

参考文献17

二级参考文献109

  • 1薛永生,林子雨,段江娇,吕晓华,张伟.用多用户多窗口方法处理多维视图动态选择[J].计算机研究与发展,2004,41(10):1703-1711. 被引量:4
  • 2禹海全,郝永生,姚志敏.对三种常用视景仿真软件的功能比较研究[J].计算机仿真,2006,23(2):174-175. 被引量:6
  • 3J.Han,N.Stefanovic,K.Koperski.Selective materialization:An efficient method for spatial data cube construction.Pacific-Asia Conf.Knowledge Discovery and Data Mining,Melbourne,Australia,1998. 被引量:1
  • 4J.Vitter,M.Wang.Approximate computation of multidimensional aggregates of sparse data using wavelets.The 1999 ACM SIGMOD Int'l Conf.Management of Data,Philadelphia,Pennsylvania,United States,1999. 被引量:1
  • 5D.Papadias,P.Kalnis,J.Zhang,et al.Efficient OLAP operations in spatial data warehouses.In:Proc.Symposium on Spatial and Temporal Databases.Berlin:Springer-Verlag,2001.443 ~ 459. 被引量:1
  • 6I.Lazaridis,S.Mehrotra.Progressive approximate aggregate queries with a multi-resolution tree structure.The 2001 ACM SIGMOD Int'l Conf.Management of Data,Santa Barbara,California,United States,2001. 被引量:1
  • 7Nick Roussopoulos,Yannis Kotdis,Mena Roussopoulos.Cubetree:Organization of and bulk incremental update on the data cube.The 1997 ACM SIGMOD Int'l Conf.Management of Data,Tucson,Arizona,United States,1997. 被引量:1
  • 8Yannis Kotdis,Nick Roussopoulos.An alternative storage organization for ROLAP aggregate views based on cubetrees.The 1998 ACM SIGMOD Int'l Conf.Management of Data,Seattle,Washington,United States,1998. 被引量:1
  • 9Seokjin Hong,Byoungho Song,Sukho Lee.Efficient execution of range-aggregate queries in data warehouse environments.Conceptual Modeling-ER 2001,Yokohama,Japan,2001. 被引量:1
  • 10D.Papadias,et al.Indexing spatio-temporal data warehouses.The 18th Int'l Conf.Data Engineering,Washington,D.C.,USA,2002. 被引量:1

共引文献131

同被引文献18

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部