期刊文献+

基于情景和用户兴趣度的移动Web预取方法 被引量:1

Mobile Web prefetching method based on context and user interest degree
下载PDF
导出
摘要 通过研究移动用户的访问行为特点,给出了情景和用户兴趣度的定义,提出了一种基于情景结合用户兴趣度的移动Web预取算法。依据Web日志数据计算移动用户在不同情景下的兴趣度,建立移动用户的情景相似度矩阵和兴趣度矩阵,通过这两个矩阵预取移动用户最感兴趣的N个页面同时计算预取的准确率。采用实例介绍了该算法的具体过程,验证了其有效性。 By studying the features of mobile user behavior,the definition of context and user interest degree was given and a prefetching algorithm based on context and user interest degree was proposed.In this algorithm,the user interest degree in dif-ferent context was calculated to build context similarity and interest matrix according to Web log data.Then the Top-N pages which mobile user were most interested in were prefetched and the prefetching precision was calculated.Finally,the algorithm was illustrated with a specific example.
作者 杜聪 王锁柱
出处 《计算机工程与设计》 CSCD 北大核心 2014年第7期2380-2383,2411,共5页 Computer Engineering and Design
基金 北京市自然科学基金项目(9122018) 北京市教委科学研究基金项目(KM1010028020 KM201110028019)
关键词 预取技术 兴趣度 情景 相似度矩阵 兴趣度矩阵 prefctching technology interest degree context similarity matrix interest degree matrix
  • 相关文献

参考文献11

二级参考文献111

共引文献108

同被引文献43

  • 1林文龙,刘业政,姜元春.Web浏览预测的Markov模型综述[J].计算机科学,2008,35(1):9-14. 被引量:7
  • 2Pazzani M J. A framework for collaborative, con-tent-based and demographic filtering [J], Artif In- tell Rev, 1999, 13 (5-6) z 393. 被引量:1
  • 3Lee T Q, Park Y, Park Y. A time-based approach to effective recommender systems using implicit feedback [- J 7. Expert Syst Appl, 2008, 34 (4) . 3055. 被引量:1
  • 4Pan W K, Chen L. GBPR: group preference based Bayesian personalized ranking for one-class collabo- rative filtering [C] //Proceedings of the 23rd Inter- national Conference on Artificial Intelligence. Bei- jing, China: ACM, 2013. 被引量:1
  • 5孔庆超,毛文吉.互联网用户行为的建模与预测[EB/OL]. (2012-09). [2015-11-01]. http.//www. caa. org. cn/ccaa, php? to = ccaa/indextext, action? Aid=29. 被引量:1
  • 6Manavoglu E, Pavlov D, Giles C L. Probabilistic user behavior models [C] //Proeeedings of the 3rd IEEE International Conference on Data Mining. Melbourne, Florida: IEEE, 2003. 被引量:1
  • 7Peng H K, Zhu J, Piao D, etal. Retweet modeling using conditional random fields [C] //Proceedings of 2011 IEEE llth International Conference on Data Mining Workshops. Vancouver, IEEE, 2011. 被引量:1
  • 8Huang Z, Zeng D D, Chen H. Analyzing consumer- product graphs: Empirical findings and applications in recommender systems [J]. Manage Sci, 2007, 53 (7) : 1146. 被引量:1
  • 9Zhang Y C, Blattner M, Yu Y K. Heat conduction process on community networks as a recommenda- tion model [J]. Phys Rev Lett, 2008, 99 (15) : 12505. 被引量:1
  • 10Park Y, Park S, Jung W, et al. Reversed CF. a fast collaborative filtering algorithm using a k-nea- rest neighbor graph [J]. Expert Syst Appl, 2015, 42 (8): 4022. 被引量:1

引证文献1

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部