期刊文献+

超超临界机组模型辨识及预测控制仿真研究 被引量:1

A Study of Model Identification and Model Predictive Control for Ultra-Supercritical Unit
下载PDF
导出
摘要 超超临界机组是一个大而复杂的系统,具有机-炉耦合、动态非线性、大延时等特性。传统控制系统难以满足在节能减排及动态响应上的更高要求。为此采用模型辨识结合模型预测控制的方法对其进行建模和控制。建立了机组的闭环系统运行模型,在分析机组特点及预测控制器预测模型的需求的基础上,在模型辨识过程中,给出了一种子空间法和传统SISO(single input single output)辨识方法相结合的方法,以取得最终预测控制器所需的单位阶跃预测模型。实时仿真结果表明了所采用策略及方法的有效性。 The Ultra-supercritical unit is a large and complicated system which characterizes Boiler-turbine cou- pling, dynamic nonlinearity and large time delay. Traditional control system is hard to satisfy the high requirement of energy-saving and emission reduction, friendly environment and system dynamic response. This paper discusses Model Identification and Model Predictive Control for Uhra-supercritical Unit. Based on the analysis of features of u- nit and the prediction model, a model identification method, which is combined SMI method with classical SISO system identification method, is proposed to obtain the final predictive model in the model identification process. Finally, the result of real time simulation demonstrates the effectiveness of the method.
出处 《计算机仿真》 CSCD 北大核心 2014年第7期121-126,共6页 Computer Simulation
基金 国家自然科学基金(60974119)
关键词 子空间模型辨识 闭环辨识 模型预测控制 超超临界机组 Subspace model identification Closed-loop identification Model predictive control MPC Ultra-supercritical unit
  • 相关文献

参考文献4

二级参考文献55

  • 1冯道显,金玉兰.河源电厂600MW超超临界机组锅炉特点[J].电力勘测设计,2005,17(3):52-55. 被引量:2
  • 2潘风萍.火力发电机组自启停控制技术及应用[M].北京:科学出版社.2011. 被引量:5
  • 3Favoreel W,De Moor B,Van Overschee P.Subspace state space system identification for industrial processes.Journal of Process Control,2000,10:149-155. 被引量:1
  • 4Jansson M,Wahlberg B.A linear regression approach to state-space subspace system identification.Signal Processing,1996,52:103-129. 被引量:1
  • 5Katayama T,Picci G.Realization of stochastic systems with exogenous inputs and subspace identification methods.Automatica,1999,35:1635-1652. 被引量:1
  • 6Wang J,Qin S J.A new subspace identification approach based on principle component analysis.Journal of Process Control,2002,12:841-855. 被引量:1
  • 7Huang B,Ding S X,Qin S J.Closed-loop subspace identification:an orthogonal projection approach.Journal of Process Control,2005,15:53-66. 被引量:1
  • 8De Cock K,De Moor B.Subspace identification methods[EB/OL].http://www.ece.sunysb.edu/~decock/subspace methods. 被引量:1
  • 9Viberg M.Subspace-based methods for the identification of linear time-invariant systems.Automatica,1995,31(12):1835-1851. 被引量:1
  • 10Van Overschee P,De Moor B.Subspace Identification for Linear Systems:Theory-Implementation -Applications.Dordrecht:Kluwer Academic Publishers,1996b. 被引量:1

共引文献59

同被引文献8

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部