期刊文献+

水声信号盲分离算法性能评价准则 被引量:1

Evaluating Criterion for Blind Underwater Acoustic Signal Separation Algorithms
下载PDF
导出
摘要 在水声信号盲分离技术仿真研究中 ,需要评价算法的收敛速度 ,稳态误差等。文中分析了水声基阵接收信号的实数延时模型和复数混合模型 ,提出了水声信号盲分离算法性能评价准则。该准则分为基于混合基阵和信号估计两种。在三 /四元均匀线列阵上 ,盲分离实测非高斯舰船辐射噪声 ,分别用 CRLS、CACY、EASI、CMA、MKMA算法验证了提出的算法评价准则 ,同时 ,还给出了这些算法分离水声信号的性能曲线。 In computer simulation for blind signal separation, we need to evaluate the separating algorithms, for example, convergence rate, steady state error, and so on. According the real domain algorithms, we present the evaluating criterion to the complex algorithms for blind underwater acoustic signals separation. The criterion is divided into two parts based on mixing matrix and source signals. RLS, ACY, EASI, CMA, MKMA algorithms are used to separate the non Gaussian ship noises recorded in computer simulation with 3/4 elements uniformly linear array. The simulation curves are given. Comparing several criterions based mixing matrix estimation, we present the optimal criterion.
出处 《探测与控制学报》 CSCD 北大核心 2002年第2期40-44,共5页 Journal of Detection & Control
基金 国家自然基金资助的项目 (60 0 72 0 5 2 )
关键词 水声信号 盲分离 水声基阵 算法评价 声纳 blind underwater acoustic signal separation underwater acoustic array algorithms evaluation
  • 相关文献

参考文献8

  • 1倪晋平,马远良,杨坤德.水声信号盲分离的实数算法与复数算法[J].西北工业大学学报,2002,20(1):44-48. 被引量:8
  • 2Pajunen Petleri, Karhunen J. Least-Squares methods for blind source separation based on nonlinear PCA[J]. Int. Journal of Neural Systems, 1998,8(5 and 6), 601-612. 被引量:1
  • 3Yang H H, Amari S-I. Adaptive online learning algorithms for blind separation maximum entropy and minimum mutual information. [J]. Neural Computation, 1997,9(7):1457-1482. 被引量:1
  • 4Cardoso J F, Laheld B. Equivariant adaptive source separation[J]. IEEE Transaction on Signal processing, 1996,44(12),3017-3030. 被引量:1
  • 5John R Theichler, Brian G Agee. A new approach to multipath correction of constant modulus signals[J]. IEEE Trans on ASSP-31, 1983,ASSP-31: 459-472. 被引量:1
  • 6倪晋平 马远良 孙超.基于峰度最大化的信号盲分拣和盲波束形成复数算法[J].声学技术,(2001):77-79. 被引量:1
  • 7张忠兵,童立,倪晋平,马远良.水声基阵设计中的噪声场数值模拟及其应用[J].系统仿真学报,2001,13(5):602-604. 被引量:7
  • 8Comon P. Independent component analysis, a new concept? [J]. Signal Processing. 1994,36(2):287-314. 被引量:1

二级参考文献10

  • 1李贵斌.声纳基阵设计原理[M].北京:海洋出版社,1993.. 被引量:8
  • 2[1]Li S, Sejnowski T J. Adaptive Separation of Mixed Broadband Sound Sources with Delays by a Beamforming Herault-Jutten Network. IEEE J of Oceanic Engineering, 1995, 20(1): 73~79 被引量:1
  • 3[2]Cardoso J F, Laheld B. Equivariant Adaptive Source Separation. IEEE Transaction on Signal Processing,1996,44(12): 3017~3030 被引量:1
  • 4[3]Amari S-I, Cichocki A, Yang H H. A New Learning Algorithm for Blind Signals Separation. In: Touretzky D, Mozer, Hasselmo M. Advances in Neural Information Processing Systems. Massachusetts: MIT Press, 1996, 757~763 被引量:1
  • 5[4]Hyvarinen A, Oja E. A Fast Fixed-Point Algorithm for Independent Component Analysis. Neural Computation, 1997, 9(7): 1483~1492 被引量:1
  • 6[5]Bingham E, Hyvarinen A. A Fast Fixed-Point Algorithm for Independent Component Analysis of Complex Valued Signals. Int J of Neural Systems, 2000, 10(1): 1~8 被引量:1
  • 7[6]Karhunen J, Oja E, Wang L, Vigaro R, Joutsensalo J. A Class of Neural Networks for Independent Component Analysis. IEEE Trans on Neural Networks, 1997, 8(3): 486~504 被引量:1
  • 8[7]Cichocki A, Bonger R E, Moszczynski L, Pope K. Modified Herault-Jutten Algorithms for Blind Separation of Sources. Digital Signal Processing, 1997, 7(1): 80~93 被引量:1
  • 9[8]Comon P. Independent Component Analysis, a New Concept? Signal Processing, 1994, 36(2): 287~314 被引量:1
  • 10李贵斌,声纳基阵设计原理,1993年 被引量:1

共引文献13

同被引文献9

  • 1Torkkola K. Blind separation of convolved sources based on information maximization, In IEEE Workshop on Neural Networks for Signal Processing, Kyoto, Japan, 1996:423 - 432. 被引量:1
  • 2Torkkola K, Blind separation of delayed sources based on information maximization. In Proc. ICASSP, Atlanta, GA, 1996:3510 - 3513. 被引量:1
  • 3Lambert R H. Multichannel blind deconvolution: FIR matrix algebra and separation of multipath mixtures [D], University of Southern California, 1996. 被引量:1
  • 4Nguyen Thi H L, Jutten C. Blind source separation for convolutive mixtures. Signal processing, 1995, 45(2): 209-229. 被引量:1
  • 5Kurita S, Saruwatari H, et al,, Evaluation of blind separation method using directivity pattern under reverberant conditions. In Proc. ICASSP. 2000, Istanbul, Turkey, 3140 - 3143. 被引量:1
  • 6Dapena A, Serviere C, Castedo L. Inversion of the sliding Fourier transform using only two frequency bins and its application to source separation. Signal processing, 2003, 83(2):453 - 457. 被引量:1
  • 7Dapena A, Serviere C, Castedo L. Separation of convolutive mixtures in the frequency-domain using only two frequency bins.In Proc. ICASSP. 2002, Florida, USA: 1633 - 1636. 被引量:1
  • 8Cardoso J F, Souloumiac A. Blind beamforming for non-Gaussian signals. IEE Proc-F, 1993, 140(6): 362 - 370. 被引量:1
  • 9张安清,章新华.基于信息理论的舰船噪声盲分离算法[J].系统工程与电子技术,2002,24(1):38-40. 被引量:5

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部