期刊文献+

基于均匀化理论韧性复合材料塑性极限分析 被引量:7

PLASTIC LIMIT ANALYSIS OF DUCTILE COMPOSITES BASED ON HOMOGENIZATION THEORY
下载PDF
导出
摘要 运用细观力学中的均匀化方法分析了韧性复合材料的塑性极限承载能力.从反映复合材料细观结构的代表性胞元入手,将均匀化理论运用到塑性极限分析中,计算由理想刚塑性、Mises组分材料构成的复合材料的极限承载能力.运用机动极限方法和有限元技术,最终将上述问题归结为求解一组带等式约束的非线性数学规划问题,并采用一种无搜索直接迭代算法求解.为复合材料的强度分析提供了一个有效手段. This paper is to determine the bearing capacities of ductile composites by means of the homogenization theory of micromechanics and the plastic limit analysis. To reflect the microstructures of a composite, a representative volume element (RVE) is first selected. According to the homogenization theory, the overall fields are decomposed into macroscopic average and microscopic fluctuation terms, which can reflect the relation between macroscopic and microscopic scales. Then, by introducing the homogenization theory into the plastic limit analysis, a strategy for the direct computation of the limit load of a microstructure RVE is put forward. For such ductile composites as metal matrix composites (MMC), the constitutions is assumed as rigid-perfectly plastic solids and obey the von Mises yield criterion. By means of the kinematic limit approach and finite element method, the numerical modeling of the plastic limit analysis of a composite is formulated as a nonlinear mathematical programming with equality-constraint conditions, which can be solved by a direct iterative algorithm developed. Numerical examples show the validity of the method and the high effectivity of the algorithm. It can be concluded from numerical results that the macroscopic strength of a composite is mainly determined by weak constitutions in the plane model and that the reinforced effects of fibers are most intensive in the off-axis direction. The method presents an effective tool for the strength analysis of ductile composites.
出处 《力学学报》 EI CSCD 北大核心 2002年第4期550-558,共9页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金(19902007) 全国优秀博士论文基金(200025) 教育部留学回国人员启动基金 清华大学机械学院基础研究基金资助项目
关键词 韧性复合材料 均匀化理论 塑性极限 细观力学 composite, homogenization theory, plastic limit, representative volume element (RVE), kinematic limit
  • 相关文献

参考文献12

  • 1[1]Suquet P. Homogenization techniques for composite media. Lecture Notes in Physics 272, New York: Springer,1987 被引量:1
  • 2[2]Francescato P, Pastor J. Lower and upper numerical bounds to the off-axis strength of unidirectional fiberreinforced composite by limit analysis methods. Eur J Mech A/Solids, 1997, 16:213~234 被引量:1
  • 3[3]Michel JC, Moulinec H, Suquet P. Effective properties of composite materials with periodic microstructure: a computational approach. Comp Methods Appl Mech Engng, 1999, 172:109~143 被引量:1
  • 4[4]Taliercio A. Lower and upper bounds to the macroscopic strength domain of a fiber-reinforced composite material. Int J Plasticity, 1992, 8:741~762 被引量:1
  • 5[5]Hill R. Continuum micromechanics of elastoplastic polycristals. J Mech Phys Solids, 1965, 13:89~101 被引量:1
  • 6[6]Hill R. A self-consistent mechanics of composite materials. J Mech Phys Solids, 1965, 13:213~222 被引量:1
  • 7[7]Gurson AL. Continuum theory of ductile rupture by void nucleation and growth: Part I--yield criteria and flow rules for porous ductile media. J Eng Mat Tech, 1977, 99:2~15 被引量:1
  • 8[8]Benveniste Y, Dvorak G J, Chen T. Stress fields in composites with coated inclusion. Mech Mater, 1989, 7:305~317 被引量:1
  • 9[9]Achenbach J. Effect of interfacial zone on mechanical behavior and failure of fiber-reinforced composites. J Meeh Phys Solids, 1989, 3:381~393 被引量:1
  • 10[10]Needleman A. A continuum model for void nucleation by inclusion debonding. J Appl Mech, 1987, 54:525~531 被引量:1

同被引文献78

引证文献7

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部