期刊文献+

采用混沌扩频序列的异步码分多址通信系统仿真 被引量:4

A-CDMA system simulation with chaotic spreading sequences
原文传递
导出
摘要 为了获取适用于异步码分多址系统的混沌序列 ,提出了一种基于扩频序列性能分析准则的优选方法 ,并用系统仿真的方法进行了验证。通过对异步码分多址系统的性能分析 ,总结了扩频序列的性能准则 ,以此为依据对初值不同的混沌序列进行筛选 ,可以得到性能优异的混沌扩频序列。采用 Monte Carlo的方法 ,在无线衰落信道下对采用混沌序列和 Gold序列的异步码分多址系统进行了仿真。结果表明 :优选的混沌序列性能要优于 Gold序列 。 The properties of spreading sequences greatly influence CDMA system performance. The characteristics of asynchronous CDMA systems are used to develop property analysis criteria for spreading sequences. Chaotic sequences are optimized using the property analysis criteria with the resulting chaotic spreading sequences having good properties. Monte Carlo simulations of an A CDMA system with chaotic sequences and Gold sequences for a wireless fading channel show that the properties of optimized chaotic sequences are better than those of gold sequences in A CDMA systems. Therefore, optimized chaotic sequences can be applied in A CDMA systems as spreading sequences.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2002年第7期901-904,共4页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金资助项目 (60 0 72 0 0 1) 清华大学"九八五"基金资助项目 (EE9918)
关键词 异步码分多址通信系统 性能分析准则 混沌扩频序列 优选方法 衰落信道 系统仿真 MonteCarlo方法 asynchronous CDMA property analysis criteria chaotic spreading sequences optimizing method fading channel system simulation
  • 相关文献

参考文献2

二级参考文献1

共引文献35

同被引文献35

  • 1Chi-Chung Chen.Optimal chaotic spread spectrum sequences for uplink CDMA Systems[A].Proceeding of IEEE2000 Adaptive system for Signal Processing,Communications,and control Symposium[C].2000:135-140. 被引量:1
  • 2De CASTRO L N,VON ZUBEN F J,LEANDRO N,et al.Learning and optimization using the clonal selection principle[J].IEEE Trans.Evolutionary Computation.2002(6):239-251. 被引量:1
  • 3OPPERMANNL,VNCETIC B C.Complex Valued spreading Sequences with Good Cross-Correlation[A].IEEE 3rd International Symposium on Spread Techniques and applications (ISSSTA'94)[C].1994:500-504. 被引量:1
  • 4K Umeno, K Kitayama. Spreading Sequences Using Periodic Orbits of Chaos for CDMA [J]. Electionics Letters, 1999, 35(7): 545-546. 被引量:1
  • 5T Kohda, A Tsuneda. Even and Odd Correlation Functions of Chaotic Chebyshev Bit Sequences for CDMA [J]. Proc. IEEE ISSSTA'94,1994, 2: 391-395. 被引量:1
  • 6Z Liu, J Tang, J Yu. An Application of Chaos: Generating Binary Pseudo-random Sequences [J]. Proc. ISCAS'88, 1988, 1: 1-3. 被引量:1
  • 7T Kohda, A Tsuneda. Statistics of Chaotic Binary Sequences [J]. IEEE Trans. Inform. Theory, 1997, 43: 104-112. 被引量:1
  • 8G Mazzini, R Rovatti, G Setti. Interference Minimization by Autocorrelation Shaping in Asynchronous DS-CDMA Systems:Chaos-based Spreading is Nearly Optimal [J]. Electron. Lett., 1999,35(13): 1054-1055. 被引量:1
  • 9R Rovatti, G Mazzini. Interference in DS-CDMA Systems with Exponentially Vanishing Autocorrelations: Chaos-based Spreading is Optimal [J]. Electronics Letters, 1998, 34: 1911-1913. 被引量:1
  • 10G Mazzini, G Setti, R Rovatti. Chaotic Complex Spreading Sequences for Asynchronous DS-CDMA - Part I: System Modeling and Results[J]. IEEE Trans., 1997. CASI-44. 937-947. 被引量:1

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部