摘要
The purpose of this study is to describe an economical approach to an existing adaptive localization technique and its implementation in the proper orthogonal decomposition-based ensemble four-dimensional variational assimilation method(PODEn4DVar). Owing to the applications of the sparse processing and EOF decomposition techniques, the computational costs of this proposed sparse flow-adaptive moderation(SFAM) localization scheme are significantly reduced. The effectiveness of PODEn4 DVar with SFAM localization is demonstrated by using the Lorenz-96 model in comparison with the Smoothed ENsemble Correlations Raised to a Power(SENCORP) and static localization schemes, separately. The performance of PODEn4 DVar with SFAM localization shows a moderate improvement over the schemes with SENCORP and static localization, with low computational costs under the imperfect model.
The purpose of this study is to describe an economical approach to an existing adaptive localization technique and its implementation in the proper orthogonal decomposition-based ensemble four-dimensional variational assimilation method(PODEn4DVar). Owing to the applications of the sparse processing and EOF decomposition techniques, the computational costs of this proposed sparse flow-adaptive moderation(SFAM) localization scheme are significantly reduced. The effectiveness of PODEn4 DVar with SFAM localization is demonstrated by using the Lorenz-96 model in comparison with the Smoothed ENsemble Correlations Raised to a Power(SENCORP) and static localization schemes, separately. The performance of PODEn4 DVar with SFAM localization shows a moderate improvement over the schemes with SENCORP and static localization, with low computational costs under the imperfect model.
基金
partially supported by the National High Technology Research and Development Program of China (Grant No. 2013AA122002)
the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX2EW-QN207)
the Special Fund for Meteorological Scientific Research in the Public Interest (Grant No. GYHY201306045)