期刊文献+

物理学研究与微电子科学技术的发展 被引量:6

PHYSICS RESEARCH AND THE DEVELOPMENT OF MICROELECTRONICS
原文传递
导出
摘要 回顾了微电子学的诞生和微电子技术的发展历史 ,展望了微电子技术未来的发展趋势 .在微电子技术诞生和发展过程中具有一些里程碑式的发明 ,如晶体管、集成电路、集成电路平面工艺、MOS器件、微处理器、光刻技术、铜互连工艺的发明等 ,其中物理学研究和突破起了关键的基础作用 .在社会需求、物理学研究和技术进步的推动下 ,微电子技术一直并将继续以特征尺寸缩小、集成度提高的模式 ,按摩尔定律预测的指数增长率发展 .微电子技术的发展 ,不仅为物理学的研究提供了崭新的技术基础 ,而且为物理学研究展现了更为广阔的空间 .但随着器件特征尺寸逐渐缩小并逼近其物理极限 ,微电子技术的发展将受到来自于材料、工艺和物理基础等方面的挑战 ,并呈现出多维发展的趋势 ,这些挑战涉及了微电子学与物理学的共同理论基础 ,需要二者互相锲合 ,期待新的突破 . We review the birth and development of microelectronics. There are many historical milestone inventions such as transistors, integrated circuits, the planar process, metal-oxide-semiconductor transistors, microprocessors, lithography and copper interconnect technology in which physics theories and achievements played a key role. The future development of microelectronics is also overviewed. Under the drive of social demand and advances in physics and technology microelectronics has been and will continue developing according to Moore's Law with shrinking size but increasing integration. On the other hand, the developments in microelectronics not only provide a strong technology base but also open up new research areas for physics research. As device feature size approaches its physical limit, microelectronics will face new challenges involving material, technology and basic physics, and will develop in a multi-dimensional fashion. As these challenges involve the common theoretical basis of microelectronics and physics, close interaction of the two fields is acquired for future new breakthroughs.
出处 《物理》 CAS 北大核心 2002年第7期415-421,共7页 Physics
关键词 物理学研究 微电子学 集成电路 摩尔定律 物理限制 技术发展 microelectronics, integrated circuits, Moore's Law, physical limitation
  • 相关文献

参考文献3

二级参考文献31

  • 1[1]International Technology Roadmap for Semiconductors,1999 Edition 被引量:1
  • 2[2]Ghani T,Mistry K,Packan P,et al.Asymmetric source/drain extension transistor structure for high performance sub-50nm gate length CMOS devices.Symp VLSI Tech Dig,2001:17 被引量:1
  • 3[3]Yu B,Wang H,Xiang Q,et al.Scaling towards 35nm gatelength CMOS.Symp VLSI Tech Dig,2001:9 被引量:1
  • 4[4]Holmes S J,Mitcheli P H,Hakey M.Manufacturing withDUV lithography.IBM J Res Develop,1997,41(1/2):7 被引量:1
  • 5[5]Chiu G L T,Shaw J M.Optical lithography:introduction.IBM J Res Develop,1997,41(1/2):3 被引量:1
  • 6[6]Rothschild M,Forte A R,Kunz R R,et al.Lithography at a wavelength of 193nm.IBM J Res Develop,1997,41(1/2):49 被引量:1
  • 7[7]Bloomstein T M,Rothschild M,Kunz R R,et al.Critical issues in 157nm lithography.J Vac Sci Technol,1998,B16(6):3153 被引量:1
  • 8[8]Gwyn C W,Stulen R,Sweeney D,et al.Extreme ultraviolet lithography.J Vac Sci Technol,1998,B16(6):3142 被引量:1
  • 9[9]Liddle J A,Berger S D,Biddick C J,et al.The scattering with angular limitation in projection electron-beam lithography (SCALPEL) system.Jpn J Appl Phys,1995,34(Part 1):6663 被引量:1
  • 10[10]Kamon K,Miyamoto T,Myoi Y,et al.Photolithography system using annular illumination.Jpn J Appl Phys,1991,30(Part 1):3012 被引量:1

共引文献51

同被引文献35

引证文献6

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部