期刊文献+

基于人工神经网络的感应电机系统辨识 被引量:3

Identification of Induction Motor Using ANN
下载PDF
导出
摘要 利用人工神经网络并行处理、容错以及任意逼近非线性函数的能力 ,针对感应电机这样一个各项参数随时间和运行状况的不同而变化的非线性系统 ,结合感应电机的外输入非线性自回归滑动平均模型(NARMAX) ,分析了不同人工神经网络 (ANN)结构和算法对系统辨识的影响。仿真实验结果中还看到前向BP网络存在着逼近“饱和”现象 ,即网络只能在一定程度上逼近辨识对象 ,性能指标会趋近于一极限 。 Utilizing the abilities of artifical neural networks in parallel disposal,fault-tolerart and discretional nonlinear function,according to such an inductive motor that is a nonlinear system with its changes by different time and operation situation,it discusses the influences by different ANN structures and algorithms combining with exagenous inputs NARMAX average model of inducation motor. The simulation results show that there exists 'saturation' in forward BP networks,that means networks can approach identification objects in a certain extent and capability target will tend to a high-point,which needs to be solved.
出处 《控制工程》 CSCD 2002年第4期71-72,90,共3页 Control Engineering of China
关键词 人工神经网络 感应电机 系统辨识 非线性系统 电磁模型 inducation motor ANN system identification nonlinear system
  • 相关文献

参考文献5

  • 1Atkinson D J,Acarnley P P,Finch J W.Observers for Induction Motor States and Parameter Estimation[J].IEEE Transactions on Industrial Application,1991,27(6):580-588. 被引量:1
  • 2Luiz Antonio de Souza Ribeiro,Cursino Brandao Jacobina.Antonio Marcus Nogueira Lima and Alexandre Cunha Oliveria.Parameter Sensitivitu of MRAC Models Employed in IFO-controlled AC Motor Drive[J].IEEE Transactions on Industrial Electronics,1997,44(4):536-544. 被引量:1
  • 3Bruce Burton,Farrukh Kamran,Ronald G Harley,Thomas G Habetler,Martin Brooke and Ravi Poddar.Identification and Control of Induction Motor Stator Currents Using Fast On-line Random Training of a Neural Network[C].Conference Record of the 1995 IEEE Industry Application Conference,1995. 被引量:1
  • 4Bruce Burton,Ronald G.Harley,Gregory Diana and James L.Rodgerson.Implementation of a Neural Network to Adaptively Identify and Control VSI-Fed Induction Motor Stator Currents[J].IEEE Transactions on Industrial application,1998,34(3):580-588. 被引量:1
  • 5孙亚飞..基于人工神经网络的感应电机定子电流控制的研究[D].东北大学,2002:

同被引文献58

  • 1马金山,高珍,杨洁明.灰色PID控制算法及仿真研究[J].机械管理开发,2004,19(5):17-19. 被引量:3
  • 2谭永红.基于BP神经网络的自适应控制[J].控制理论与应用,1994,11(1):84-88. 被引量:91
  • 3刘华,黄田,曾子平.基于神经网络的一类非线性系统参数估计[J].天津大学学报,1994,27(5):563-566. 被引量:6
  • 4苏义鑫,杨熔,李永华.神经网络在自动控制中的应用[J].武汉汽车工业大学学报,1996,18(2):25-28. 被引量:1
  • 5Yang S M,Lee C H.A deadbeat current controller for field oriented induction motor drives[J].IEEE Transactions on Power Electronics,2002,17(5):772 -778. 被引量:1
  • 6Bu J R,Xu L Y.A new deadbeat fuzzy algorithm for current regulated PWM without rotating reference frame transformation[A].Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society[C].Germany:Aachen IECON'98,1998. 被引量:1
  • 7Ottersten R,Svensson J.Vector current controlled voltage source converter-deadbeat control and saturation strategies[J].IEEE Transactions on Power Electronics,2002,17(2):279-285. 被引量:1
  • 8Malesani L,Mattavelli P,Buso S.Robust dead-beat current control for PWM rectifiers and active filters[J].IEEE Transactions on Industry Applications,1999,35(3):613-620. 被引量:1
  • 9Nishida K,Nakaoka M.Deadbeat current control with adaptive predictor for three-phase voltage-source active power fllter[A].IEEE 35th Annual Conference on Power Electronics Specialists Conference[C].Germany Aachen:PESC,2004. 被引量:1
  • 10WangDZ,WangZL,GuSS.Identification and control of induction motor using artificial neural networks[A].Proccedings of the Fifth International Conference on Electrical Machines and Systems[C].Shenyang:ICEMS 2001,2001. 被引量:1

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部