摘要
彭加贵教授推广了三角形中著名的Neuberg-Pedoe不等式 .对于Neuberg-Pedoe不等式在高维欧氏空间En(n≥ 2 )中的推广 ,冷岗松分别给出了n维单形中楼长型和侧面积型两种推广的加强形式 .通过一个代数不等式 ,对En 中两个n维单形的中线和体积 ,给出了Neuberg -Pedoe不等式的一种高维推广的加强形式 。
Peng Chiakuei has extended the famous Neuberg-Pedoe inequality of triangle. Leng Gangsong has obtained separately two reinforced generalizations to higher dimensions of the Neuberg-pedoe inequality for edge length and lateral area of n-simplex in E n(n≥2).In this paper,using an algebraic inequality,we prove a reinforced generalization to higher dimensions of the Neuberg-pedoe inequality for central lines and volumes of two simplexes in E n.In fact,we obtain a generalization to higher dimensions of the Peng Chiakuei inequality more reinforced than the Neuberg-Pedoe inequality.
出处
《湖北民族学院学报(自然科学版)》
CAS
2002年第1期19-21,共3页
Journal of Hubei Minzu University(Natural Science Edition)
基金
湖北省教委指导性项目 ( 97C14 )