摘要
利用赋值理论及拓扑学中的 Sperner引理 ,得到了与 Stein猜想密切相关的结论 ,即对于任意的特殊多边形 P,必存在特殊多边形簇 {Pn|n∈ N},使得 limn→∞ Pn=P,limn→∞ A(Pn) =A(P) ,并且 Pn
By using valuation theorem and Sperner lemma in topology,a result having a close relation with Stein's conjecture is obtained,that is, for any special polygon P , there are a family of special polygons { P n|n ∈N} such that lim n→∞P n=P , lim h→∞A(P n)=A(P) ,and P n can not be cut into an odd number of triangles of equal areas.
出处
《河北师范大学学报(自然科学版)》
CAS
2002年第4期341-342,共2页
Journal of Hebei Normal University:Natural Science
基金
河北省自然科学基金资助项目 (199174)