期刊文献+

关于极小子流形全纯量曲率的一个空隙定理

A GAP THEOREM FOR TOTAL SCACLAR CURVATURE OF MINIMAL SUBMANIFOLDS
下载PDF
导出
摘要 本文证明了欧氏空间RN中的n-维(n>2)完备极小子流形,若其全纯量曲率小于(π/46^(1/2)n,则必是n-维平面.此结论改进了文[2,6]中的结果. In this paper, the author proves that: Let M be an n-dimensional (n > 2) complete minimal submanifold M in RN with ‖A‖n < ,where A stands for the second fundamental form of M, must be an n-dimensional plane, and generalizes the results in [2] and [6].
作者 张希
出处 《数学年刊(A辑)》 CSCD 北大核心 2002年第3期355-360,共6页 Chinese Annals of Mathematics
关键词 极小子流形 第二基本形式 全纯量曲率 调和函数 Second fundamental form, Harmonic function, Total scalar curvature, Harmonic function
  • 相关文献

参考文献7

  • 1Anderson, M. T., The compactification of a minimal submanifold in Euclidean space by the Gauss map [R], (preprint), (final version in Dept, of math., California institute of Technology Pasadena), (A 91125), (1986). 被引量:1
  • 2Remarques sur l'equations de J.Simons [J], Differential Geometry, Longman Sci. and Tech., Harlow, (1991), 47-57. 被引量:1
  • 3Li, P., Curvature and function theory on Riemannian manifolds [J], Survey in Differential Geometry (to appear). 被引量:1
  • 4Li, P. & Tam, L F., Harmonic functions and the structure of complete manifolds [J], J.Diff. Geom., 35(1992) 359-383. 被引量:1
  • 5Michael, J. H. & Simon, L. M., Sobolev and mean-value inequalities on generalized submanifolds of RN [J], Comm. Pure Appl. Math., 26(1973), 361-379. 被引量:1
  • 6Muto, H., Sobolev inequality and stability of minimal submanifolds [J], Kodai. Math.J., 18(1995), 266-274. 被引量:1
  • 7Simons, J., Minimal varieties in Riemannian manifolds [J], Ann. of Math., 88(1968),62-105. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部