摘要
利用严等价关系和基于多项式矩阵的预估控制算法 ,证明了各种模型预估控制算法的控制律在模型准确时是等价的。在此基础上 ,给出了模型预估控制对给定值解耦的充要条件 ,指出解耦后系统可能是不稳定的。给出了关于系统解耦且可任意配置极点的充要条件的定理。由于解耦受稳定性、鲁棒性和控制作用幅度的限制 ,给出了一种局部解耦策略。
The equivalence of algorithms for different model predictive control (MPC) was proved by the polynomial matrix desctiption. Based on this proven result, the necessary and sufficient decoupling conditions for MPC are given. It is indicated that the closed loop system will be unstable if the controlled plant has transmission zero outside or on the unit circle. A theorem of necessary and sufficient conditions for decoupling and simultaneously arbitrary pole assignment of the system is given. In consideration of the limits of stability, robustness and control scale, a partial decoupling approach is proposed.
出处
《石油大学学报(自然科学版)》
CSCD
北大核心
2002年第3期108-112,共5页
Journal of the University of Petroleum,China(Edition of Natural Science)
关键词
模型
预估控制
解耦特性
稳定性
任配极点
局部解耦
models
predictive control
decoupling
stability
arbitrary pole assignment
partial decoupling