摘要
给出了一般内插空间中线性一致有界算子序列逼近的正逆定理 ,作为应用 ,用 Meyer-Konig and Zeller算子和 Bernstein算子给出了一类特殊的内插空间中一致逼近的特征性定理 ,其结果为已有的经典 Zygmund类中相应结论的推广。
The direct and inverse theorem of approximating by linear bounded operator sequences in generalized interpolation spaces are obtained.As application,the characterization theorems of Meyer Konig and Zeller operators and Bernstein operators in a special interpolation space are presented.The results obtained generalize the correspondences in classical Zygmund class.
出处
《宝鸡文理学院学报(自然科学版)》
CAS
2002年第2期102-104,150,共4页
Journal of Baoji University of Arts and Sciences(Natural Science Edition)
基金
陕西省教育厅专项科研基金项目 ( 0 0 JK110 )