期刊文献+

基于熵模型的自适应信息融合方法 被引量:5

Adaptive Fusion Approach Based on Entropy Model
下载PDF
导出
摘要 建立了一种用于信息融合的熵模型 ,依据融合的几个步骤即信息提取、关联与决策 ,描述了基于熵模型进行信息自适应融合的新方法·该方法可对从各对象源 (如传感器、数据库、知识库等 )中提取的特征属性信息进行模型化 ,对这些模型化的属性信息进行关联后 ,得到准确的决策·为了实现多对象源的信息融合 ,提出了EAA算法·该算法基于熵自适应聚集规则 ,通过缩减关联模型联合动作的复杂性来控制其收敛性·并通过应用实例 。 A kind of entropy model for information fusion was proposed. According to fusion steps, information detection, association, decision, the new fusion approach based on the entropy model was described. This method can model the character property information from multi sources such as sensors, database, repository, and by associating these information the decision can be gained. In order to realize multi object information fusion, an algorithm called EAA for fusion problem was developed based on the entropy adaptive aggregation law. The algorithm controls it's convergence by reducting the complexity of the action of association model.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2002年第3期232-235,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目 (69873 0 0 7)
关键词 自适应融合 信息表示 关联 决策 熵模型 adaptive fusion information representation association decision making entropy model
  • 相关文献

参考文献10

  • 1[1]Zhou B Y, Leung H. Minimum entropy approach for multisensor data fusion[A]. In:Larson P ed. IEEE Signal Processing Workshop on High-Order Statistics(SPW-HOS'97)[C].NY:Prentice Hall, 1997.336-339. 被引量:1
  • 2[2]Jansen M, Roose D. Bayesian correction of wavelet threshold procedures for images denoising[J]. Bayesian Statistical Science, 1998,35:245-251. 被引量:1
  • 3[3]Luca A D,Termini S. A definition of non-probabilistic entropy in the setting of fuzzy sets theory[J]. Information and Control, 1972,20:301-312. 被引量:1
  • 4[4]Couso I, Montes S. Measure of fuzziness and information theory[A]. In:Soheil S ed. Information Processing and Management of Uncertainty in Knowledge[C]. NY:Prentice Hall, 1996.501-505. 被引量:1
  • 5[5]Fioretto A, Sgarro A. A second step information measure and the uncertainty of bodies of evidence[A]. In:Soheil S ed. Information Processing and Management of Uncertainty in Knowledge[C]. NY:Prentice Hall, 1996.687-691. 被引量:1
  • 6[6]Connant R C. Detecting subsystems of a complex system[J]. IEEE Transactions on Systems, Man and Cybernetics, 1972,2(4):550-553. 被引量:1
  • 7[7]Zellner A, Highfield R A. Calculation of maximum entropy distributions and approximation of marginal posterior distributions[J]. Journal of Econometrics, 1988,37:195-209. 被引量:1
  • 8[8]Djafari A M. Entropy in signal processing[J]. Traitement du Signal, 1998,15(6):545-551. 被引量:1
  • 9[9]Chakik F E. Maximum d'entropie et reseaux de neurones pour la classification[J]. These dedoctorat 3eme cycle, Institut Polytechnique de Grenoble, 1998,9:236-241. 被引量:1
  • 10[10]Christophe D. Utilisation d'un critere entropique dans les systemes de detection[J]. These de doctorat 3eme cycle, Universite des Sciences et Technologies de Lille, 1998,12:125-130. 被引量:1

同被引文献60

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部