摘要
设x_c(G)是使平面图G(V,E,F)的V∪E∪F中相邻、相关联的元素均着为不同色的最少颜色数,Δ(G)为G(V,E,F)的最大度,本文证明了等,其中p=|V(G)|,W_p为轮图,F_p为扇图,P_(l×m)为平面格子图。
Let G(V,E, F) be a planar graph, the complate chromatic number r_c(G) G is the minimum num ber colours required for colouring the elements of V∪E∪F, so that the associate elements have differ ent colours(adjacent or incident). We have got as follows: x_c(W_1)=p(p≥6),x_c(F_1)=p(p≥6),x_c(G_0)≤△(G)+4,x_c(P_(l×m))=6(l,m≥2, l≡m≡0(mod2)). Where W_1,F_1 and G_0 denots wheel graphs, fan graphs, outerplanar graphs and planar latticed graphs separately.
出处
《新疆大学学报(自然科学版)》
CAS
1991年第1期17-18,共2页
Journal of Xinjiang University(Natural Science Edition)
基金
甘肃省自然科学基金