期刊文献+

Clarke导数的连续性与函数的严格可微性 被引量:1

STRICT DIFFERENTIABILITY OF NONSMOOTH FUNCTIONS
下载PDF
导出
摘要 引进Lipschitz正则条件,证明了Banach空间上Lipschitz正则函数在某点严格可微当且仅当沿每个方向的Clarke导数在该点连续;在可分空间中Lipschitz正则函数的严格可微点集是第二纲的,因而处处稠密,并得到Clarke梯度用严格导数的极限表示。 This paper proposes Lipschitz reguvarty,proves that the fun-ctions with Lipschitz regularty are strictly differentiable at x in Banachspace X if and only if Clarke's derivatives are continuous at x for everyv∈X; On Separable space,the set of the points where the functions withLipschitz regularty are strictly differentiable is second category,and Clar-kes' generalized gradient is exprssed with the limit of strict derivatives.
作者 阮国桢
机构地区 湘潭大学数学系
出处 《湘潭大学自然科学学报》 CAS CSCD 1991年第4期12-18,共7页 Natural Science Journal of Xiangtan University
关键词 可微性 稠密 次导数 Clarke导数 subderivative differentiability dense
  • 相关文献

同被引文献9

  • 1Zhou X, Song Y,Wang L. A two-step Sor-Newton meth- od for nonsmooth equations[J]. Nonlinear Analysis, 2009,71:4387-4395. 被引量:1
  • 2Homeir H. A modified method for root finding with cu- bic convergence[J]. Comput Appl Math, 2003,157: 227- 230. 被引量:1
  • 3Homeir H. A modified Newton method with cubic con- vergence[J]. Comput Appl Math, 2004,169 : 161-169. 被引量:1
  • 4Argyros I K. On the semilocal convergence of a fast two- step Newton method [J]. Revista Colombiana de Matemdticas, 2008,42 (1) : 15-24. 被引量:1
  • 5Ozban A Y. Some new variants of Newton's method[J]. Appl Math, 2004,17 : 677-682. 被引量:1
  • 6Hernandez M A, Salanova M A. Modification of the Kantorovich assumptions for semilocal convergence of the Chebyshev methods[J]. Comput Appl Math, 2000, 66(3) :131-143. 被引量:1
  • 7Kantorovich L V, Akilov G P. Functional analysis in normed spaces[M]. Oxford: Pergamon Press, 1982. 被引量:1
  • 8Chen X. On convergence of sor methods for nonsmooth equations[J]. Numer Linear Algebra Appl, 2002,9: 81- 92. 被引量:1
  • 9Amat S, Busquier S. A modified secant method for semismooth equations[J]. Appl Math Lett, 2003,16 877-881. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部