期刊文献+

奥里乳化油燃烧器设计与实验 被引量:1

Design and experiment on the Orinoco emulsified oil burner
下载PDF
导出
摘要 对一民用锅炉设计了与之相适应的奥里乳化油燃烧器。该燃烧器采用气动旋流雾化方式 ,雾化性能好 ,整体结构为集装式 ,结构紧凑。热态试烧表明 。 A burner is designed in order to burn the Orinoco emulsified oil in the civil boiler. This burner is in spinning air atomizing manner, and the atomizing properties of the nozzle are very good. The design is perfect, and the burner performs very well. The result of combustion experiment shows that the burner can be used to burn the Orinoco emulsified oil without fail.
出处 《石油化工设备》 CAS 2002年第1期23-25,共3页 Petro-Chemical Equipment
关键词 燃烧器 奥里乳化油 设计 试验研究 民用锅炉 burner Orinoco emulsified oil design experimental research
  • 相关文献

参考文献5

二级参考文献1

共引文献28

同被引文献19

  • 1张讲社,郭高.加权稳健支撑向量回归方法[J].计算机学报,2005,28(7):1171-1177. 被引量:13
  • 2Smola A J, Scholkopf B. A tutorial on support vector regression [ J]. Statistics and Computing, 2004, 14 (3) : 199-222. 被引量:1
  • 3Scholkopf B, Smola A J, Williamson R C, et al. New support vector algorithm [J]. Neural Computation, 2000, 12(12) : 1207-1245. 被引量:1
  • 4Song Q, Hu W, Xie W. Robust support vector machine with bullet hole image classification [ J ]. IEEE Transactions on Systems, Man and Cybernetics, 2002, 32(4):440-448. 被引量:1
  • 5Weston J, Herbrich R. Adaptive margin support vector machines [ A]. In: Smola A J, Bartlett P, Sch~lkopf B, et al. eds: Advances in Large Margin Classifiers[ C ], Cambridge, MA, USA: MIT Press, 2000 : 281-295. 被引量:1
  • 6Xu Lin-li, Crammer K, Schuurmans D. Robust support vector machine training via convex outlier ablation [ A ]. In : Proceedings of the 21 st National Conference on Artificial Intelligence [ C ] , Boston, Massachusetts, USA, 2006: 536-546. 被引量:1
  • 7Zhan Yi-qiang, Shen Ding-gang. An adaptive error penalization method for training an efficient and generalized SVM [ J] . Pattern Recognition, 2006, 39(3) : 342-350. 被引量:1
  • 8Suykens J A K, De Brahanter J, Lukas L, et al. Weighted least squares support vector machine: robustness and sparse approximation [J]. Neurocomputing, 2002, 48(1-4) : 85-105. 被引量:1
  • 9Chuang C C, Su F F, Jeng J T, et al. Robust support regression networks for function approximation with outliers [ J ] . IEEE Transactions on Neural Networks, 2002, 13 (6) : 1322-1330. 被引量:1
  • 10Zhan Yong, Cheng Hao-zhong. A robust support vector algorithm for harmonic and interharmonic analysis of electric power system [J].Electric Power Systems Research, 2005, 73 (3) : 393-400. 被引量:1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部