摘要
讨论单个凸守恒律初边值问题的粘性消失法的整体误差估计 ,其中初始值和边界值分别是递减和递增的具有有限个间断点的分段常数函数 .无粘问题的弱熵解是含有有限个激波的分片常数函数 ,且含有激波的相互追赶及激波与边界相撞两种相互作用。使用匹配方法证明了在L1-范数下粘性解与无粘解间的误差界是O(ε) .
The global error estimate for the viscosity methods to initial-boundary problems with scalar convex conservation laws is discussed, where the initial-boundary data are a finite number of piecewise constants with decreasing initial data and increasing boundary data. The weak entropy solution of the problem is a piecewise constant function with finitely many shocks, in which the interaction is overtaking of shocks and colliding of shocks with the boundary. By a matching method, it is proved that the error of the viscosity solution to the inviscid solution is bounded by O(ε) in L 1-norm.
出处
《暨南大学学报(自然科学与医学版)》
CAS
CSCD
2002年第1期15-23,共9页
Journal of Jinan University(Natural Science & Medicine Edition)
基金
国家自然科学基金资助项目 (10 172 0 40 )